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Abstract

In this thesis we study different aspects of the asymptotic symmetries of the gravitational

field as described by general relativity. We first briefly recall the surprising fact, uncovered

by Bondi, van der Burg, Metzner and Sachs (BMS) [1]–[3] in the 1960s, that in the limit of

a vanishing gravitational field the symmetry of spacetime does not reduce to the Poincaré

group but is in fact described by an infinite-dimensional generalization thereof. In what

follows this BMS group will be the central object of our interest.

The following chapter is devoted to the analysis of asymptotic symmetries in the Hamil-

tonian formulation of general relativity. We revisit previous treatments [4, 5] and find that

at spatial infinity a symmetry which is even larger than BMS can be obtained.

It has been shown by Witten [6] in the 1980s that 2+1 dimensional gravity is completely

equivalent to a specific gauge theory with Poincaré as gauge group. We investigate the

question whether it is possible to obtain a gauge theory with BMS as gauge group.

Next we turn to the topic of the deformation of symmetries. After reviewing the math-

ematical notions of Hopf algebras and twist deformations we generalize the κ-deformation

[7]–[11] of the Poincaré to the BMS algebra.

We then consider the topic of black hole entropy and revisit one of the earliest attempts

of a microscopic explanation of its origin by ’t Hooft [12]. By including backreaction effects

we find a natural explanation for a certain regulator, which has been introduced ad-hoc

by ’t Hooft, and thereby remove the previous need to fine-tune its value.

Lastly, we review the information loss paradox and how it might be connected to the

BMS symmetry [13] and point out that our results from the κ-deformation of the BMS

algebra could be relevant in this context.
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1 Overview

Symmetries play a crucial role in the formulation of the fundamental theories of physics. A

system is said to be symmetric if it is invariant under some transformation or a set thereof.

If a system is, for instance, invariant under translations the outcome of any experiment

is independent of where in space it is performed. Such a set of symmetry transformations

is referred to as a symmetry group. In particle physics the underlying symmetry is the

Poincaré group, which is the symmetry of spacetime in absence of a gravitational field and

is fundamental for special relativity.

In this thesis we are concerned with the symmetries of spacetime in the presence of a

gravitational field as described by general relativity (GR) and seen by an observer far away

from the field’s source. Such symmetries, which leave invariant the behavior of the space-

time metric only at large distances, are called asymptotic symmetries. They have been

first studied by Bondi, van der Burg, Metzner and Sachs (BMS) [1]–[3] in the 1960s with

the surprising result that asymptotically flat spacetimes exhibit close to null infinity, i.e.

at large light-like distances, an asymptotic symmetry, the so-called BMS symmetry, which

is much larger than the Poincaré group and is in fact an infinite-dimensional generaliza-

tion thereof. Since BMS described the symmetry of spacetime in the limit of a vanishing

gravitational field one can conclude that in the low-energy limit general relativity does

not, in fact, reduce to just special relativity. The aim of this thesis is to develop a better

understanding of this baffling, yet well-established, fact and to investigate its implications

in a number of different contexts.

In section 2, which is based on parts of our publication [14], we explain how the BMS

group emerges, in three and four-dimensional spacetimes, from analyzing the symmetries

of asymptotically flat spacetimes and it is therefore the foundation which the subsequent

sections will frequently refer to. Special attention will be paid to certain extensions of the

original BMS group which have recently been proposed by Barnich and Troessaert [15].

We show that they contain an infinite number of Poincaré subgroups in four dimensions,

a result that has previously been established in three dimensions only.

In section 3, which reproduces our preprint [16], we explore asymptotic symmetries

in the Hamiltonian formulation of GR and in particular their relation to boundary terms

present in the Hamiltonian. It was explained by Regge and Teitelboim [4] that such

terms can be understood as Noether charges which generate the asymptotic symmetries

of the system. Their analysis of asymptotically flat spaces lead to the result that the

asymptotic symmetry of such spaces at spatial infinity, i.e. at large spacelike distances,

is the Poincaré group and not an enlargement thereof. A natural question that arises is

why the asymptotic symmetries at spatial and null infinity are so different. Only recently

this question has been addressed, by Henneaux and Troessaert [5, 17], revealing that BMS

might be the symmetry at spatial infinity after all. We are going to revisit their analysis

and find that one can obtain an even larger symmetry group at spatial infinity.

Section 4 is about the relation of GR and gauge theories. The fundamental theories
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describing the electromagnetic, weak and strong interactions are formulated as gauge

theories and at first sight they appear to have a structure which is entirely different

from that of GR, at least in its standard formulation. However, in the so-called vielbein

formulation many similarities appear and for the three-dimensional case Witten [6] has

shown that GR is completely equivalent to a gauge theory based on the Poincaré group.

We will investigate whether it is possible to generalize Witten’s construction in order to

obtain a gauge theory based on the BMS instead of the Poincaré group.

Section 5, which is based on our publications [14] and [58], is concerned with the

deformation of symmetries. Such deformations are studied because they are thought [18]

to shed some light on the elusive theory of quantum gravity [19], which seeks to describe

gravity in regimes where quantum mechanical effects can not be neglected. Examples for

such regimes are the center of a black hole and very early times in the standard model of

cosmology, where in both cases GR predicts a divergent density. These divergences are

commonly interpreted to signal a breakdown of GR and the need for a more fundamental

theory of quantum gravity arises. Despite many efforts, to this day there exists no such

theory which is broadly accepted and confirmed by experiment. Now, the κ-deformation

[7]–[11] of the Poincaré algebra1, a particular scheme of deformation, is believed to describe

the symmetries of spacetime in the limit of a vanishing gravitational field at the Planck

scale [20], which is the scale at which it is expected that quantum gravity effects can not be

neglected. Since in the limit of a vanishing gravitational field the symmetry of spacetime is

in fact much larger than the Poincaré group we are going to generalize the κ-deformation

to the BMS group. As they are a prerequisite for performing this deformation we will first

introduce a few mathematical notions, such as Hopf algebras and twist deformations.

Finally, in section 6 we first discuss Hawking radiation [21] and black hole entropy. The

discussion of black hole entropy reproduces our publication [65]. When quantum effects are

taken into account a black hole emits black body radiation at a temperature proportional

to its inverse mass and it carries entropy proportional to the horizon area. What are the

microscopical degrees of freedom responsible for this entropy? This is a long-standing

question which still did not find a conclusive answer. Here we revisit one of the earliest

attempts at an explanation by ’t Hooft [12], who proposed that black hole entropy is the

thermal entropy of a gas of quanta at Hawking temperature near the horizon. The novelty

of our approach lies in the consideration of backreaction effects which have been neglected

in the original treatment. The second part of this section is concerned with the information

loss paradox [22] and a loophole [13] related to the BMS symmetry, recently proposed by

Hawking, Perry and Strominger, which could potentially provide a solution. We are going

to briefly explain what the paradox is about and describe an ongoing discussion in the

literature about the validity of aforementioned loophole. Lastly, we show that in fact our

results from the κ-deformation of BMS enter this discussion and explain the implications.

1Our discussion will mainly be on the level of the Lie algebra corresponding to the symmetry group,
which can be thought of as describing infinitesimal symmetry transformations. The Lie algebra is the
tangent space at the identity of the Lie group.
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2 Symmetries of asymptotically flat spacetimes

In this section, which partially reproduces our publication [14], we will present the BMS

algebra and discuss its structure. We start with the four-dimensional case, which is more

familiar, and in the next subsection we turn to the simpler three-dimensional case.

2.1 Four-dimensional gravity

2.1.1 Bondi coordinates, boundary conditions and BMS algebra

In an effort to better understand gravitational waves in the full, non-linear theory of GR,

BMS [1] [2] [3] investigated solutions to Einstein equations which consist of an isolated

source and which become flat at null infinity, see figure 1. The definition of asymptotic

flatness employed by BMS is that in the limit of large r, while keeping all other coordinates

constant, the spacetime metric behaves as

lim
r→∞

gµν = ηµν +O(r−1), (2.1)

where ηµν is the Minkowski metric. We are going to use the same definition throughout

and only mention that there exist other, coordinate independent, definitions, see [23], [24].

Naively one could expect that the symmetry group, as seen by an observer close to

null infinity, of such asymptotically flat spacetimes is just the Poincaré group. The sur-

prising result of BMS was that the symmetry transformations that leave the form of an

asymptotically flat metric invariant do not just include translations, rotations and boosts

but also so-called supertranslations, which can be thought of as angle-dependent trans-

lations. These asymptotic symmetry transformations form the BMS group, which is a

semi-direct product of the Lorentz group with an infinite-dimensional abelian group of

supertranslations.

The analysis of BMS has been carried out using coordinates (u, r, xA) in the Bondi

gauge

guu = 0, guA = 0, det gAB = r4 det γAB, (2.2)

where u = t − r is the retarded time, xA are angular coordinates and det γAB is the

determinant of the unit sphere metric. The first condition implies that the normal vector

of hypersurfaces defined by u = const., nµ = gµν∂νu, is null and thus u is labeling null

hypersurfaces. Angular coordinates xA are defined such that the directional derivative

along nµ vanishes, nµ∂µx
A = 0, and r is defined such that the area of a 2-surface u =

const., r = const is 4πr2. After lowering the indices these conditions are grr = grA = 0.

Using these Bondi coordinates, BMS write the spacetime metric in the form [2]

ds2 =− Ue2βdu2 − 2e2βdudr + r2gAB

(
dxA − UAdu

)(
dxB − UBdu

)
, (2.3)
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Figure 1: Penrose diagram of Minkowski spacetime. A null geodesic is presented in blue
and a timelike geodesic in orange. We denote with i+, i− future and past timelike infinity,
I+, I− future and past null infinity and i0 spatial infinity. Intuitively one can think of I−
as the region where null geodesics originate and of I+ as the region where they end.

where U, β and UA are functions of u, r, xA.

In line with their analysis, asymptotically flat spacetimes at null infinity are defined

by assuming the following expansion of metric functions, see also [15, 25, 26]

β =
β0

r
+
β1

r2
+O

(
r−3
)

U = 1− 2mB

r
+O

(
r−2
)

UA =
1

r2
UA +

1

r3

[
−2

3
NA +

1

16
DA

(
CBCC

BC
)

+
1

2
CABDCCBC

]
+O

(
r−4
)

gAB = γAB +
1

r
CAB +

1

r2
DAB +O(r−3),

(2.4)

where γAB is the round metric on the unit 2-sphere and DA the covariant derivative

associated with γAB. We thereby define boundary conditions which describe the large-

distance behavior of the metric. The function mB(u, xA) is referred to as Bondi mass

aspect, NA(u, xA) as the angular momentum aspect and the retarded time-derivative

NAB(u, xA) = ∂uCAB(u, xA) as Bondi news. In the literature exist several different defi-

nitions of NA, see [15, 25, 26, 27], where for definiteness we cite the one given in [26].

Imposing the above determinant condition, i.e. the last condition in (2.2), makes CAB
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traceless. To see this we first act with the r-derivative

∂r det

(
gAB
r2

)
= 0, (2.5)

and then consider

det

(
gAB
r2

)
= det

(
γAB +

CAB
r

+O(r−2)

)
= det γ

(
1 +

γABCAB
r

+O(r−2)

)
. (2.6)

Now, acting with the r-derivative on the above expression yields

∂r det

(
gAB
r2

)
= −det γ

γABCAB
r2

+O(r−3) (2.7)

and vanishing of the leading order implies that CAB is traceless. Since CAB is traceless and

symmetric it has two polarization modes and contains the information about gravitational

radiation near I+.

Imposing Einstein field equations in vacuum2, Rµν = 0, one obtains the following

conditions

UA = −DBCAB/2, β0 = 0, β1 = − 1

32
CABC

AB (2.8)

and the metric now reads

ds2 =− du2 − 2dudr + r2γABdx
AdxB

+
2mB

r
du2 + rCABdx

AdxB +DBCABdudx
A +

1

16r2
CABC

ABdudr

+
1

r3

[
4

3
NA −

1

8
DA

(
CBCC

BC
)
− CBADCCBC

]
dudxA

+ (subleading terms). (2.9)

Since the boundary conditions (2.4) allow the guA component to be of order O(r0)

it might seem that the metric is not asymptotically flat, since in the large r limit this

component is not suppressed. Transforming to Cartesian coordinates reveals that this

component is in fact subleading and instead of explicitly performing this transformation

one can argue directly from the form of the metric (2.9) that this has to be the case.

Since the first line just gives the diagonal matrix diag(−1, 1, 1, 1) when transforming to

Cartesian coordinates yµ we can infer that dr ∼ du ∼ O(r0) · dyµ, dxA ∼ O(r−1) · dyµ

and it is therefore clear that the asymptotic flatness of (2.9) is not spoiled by the guA

component.

2For simplicity we only consider pure gravity. Allowing a non-vanishing energy-momentum does not
change our discussion of asymptotic symmetries, see [26] for details.
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Before proceeding with the discussion of the asymptotic symmetries, we note that one

of the central results of [1] is that the mass of the system, M(u) =
∫
d2ΩmB(u, xA), is

constant only for vanishing Bondi news and it is otherwise a monotonically decreasing

function of u. This has the physical interpretation that the Bondi news describes the

rate of gravitational radiation which, when non-vanishing, carries away mass through null

infinity.

We are now describing how the asymptotic symmetries of the metric (2.9) are ob-

tained. Since the Lie derivative tells us how the metric changes under a transformation

of coordinates xµ → xµ + ξµ we can find transformations which preserve the Bondi gauge

by the following demands on the Lie derivative

Lξgrr = 0, LξgrA = 0, Lξ∂r det
(
gAB/r

2
)

= 0. (2.10)

Similarly we find transformations which leave the asymptotic form of the metric (2.9)

invariant by demanding

Lξguu = O
(
r−1
)
, Lξgur = O

(
r−2
)
, LξguA = O

(
r0
)
, LξgAB = O(r). (2.11)

Solving these requirements one obtains the BMS generators in terms of two functions on

the sphere f(z, z̄) and RA(z, z̄), see also [15, 28]

ξ(f,R) =

[
f +

u

2
DAR

A + o
(
r0
)]
∂u

+

[
RA − 1

r
DAf + o

(
r−1
)]
∂A

+

[
−r + u

2
DAR

A +
1

2
DAD

Af + o
(
r0
)]
∂r

(2.12)

which can be understood as “asymptotic Killing vectors” since they do not leave the

metric invariant everywhere but only at the boundary. While f is unconstrained the last

condition in (3.29) imposes that RA has to obey the conformal Killing equation on the

2-sphere

DARB +DBRA = γABDCR
C . (2.13)

For our further discussion it is helpful to introduce a specific choice of angular coordinates.

We will use complex stereographic coordinates xA = (z, z̄), which are related to the

standard coordinates (θ, φ) via z = eiφ cot(θ/2), z̄ = z∗. The unit round metric γAB reads

in these coordinates γzz̄ = 2
(1+zz̄)2

.

In these coordinates the equation (2.13) imposes the conditions ∂zR
z̄ = 0 and ∂z̄R

z =

0, so that Rz(z) is an holomorphic function and Rz̄(z̄) antiholomorphic. If we demand

that ξ(f,R) are to be globally well-defined there are further restrictions on RA. To see

this we expand Rz in monomials zn+1 and consider the vector vn = zn+1∂z which is the

z-component of ξ. The vector vn is divergent at z = 0 for n < −1 and it is divergent in
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the limit z → ∞ for n > 1, where z = 0 corresponds to the north pole and z → ∞ to

the south pole on the 2-sphere. It is clear that in both limits vn is finite at n = −1 but

to demonstrate that it is also finite for n = 0, 1 we take the limit z → ∞ by introducing

w = z−1 and setting w = 0 and find vn = −ω−n+1∂ω, which is indeed finite at ω = 0 for

n = 0, 1. By the same argument one finds three more globally well-defined functions for Rz̄

and below we show that the Killing vectors ξ(0, R) with Rz = zn+1, Rz̄ = z̄n+1, n = ±1, 0

are in fact the generators of Lorentz transformations.

In leading order these Killing vectors form the four-dimensional BMS algebra B4, which

is an infinite-dimensional algebra with the bracket [28]

ξ(f̂ , R̂) =
[
ξ(f,R), ξ(f ′, R′)

]
, (2.14)

where

f̂ = RADAf
′ +

1

2
fDAR

′A −R′ADAf −
1

2
f ′DAR

A

R̂A = RBDBR
′A −RBDBR

A.
(2.15)

It can be seen from (2.14) that T = ξ(f, 0) form an abelian ideal of the algebra. These

generators are referred to as supertranslations since they generalize the Poincaré transla-

tions. The generators l = ξ(0, R) contain the Lorentz algebra and possible extensions of

it which will be referred to as superrotations.

It is interesting to observe what happens when one acts with a supertranslation on the

Minkowski vacuum, which is characterised by mB = Czz = Nzz = 0, and in which case

one finds [27]

LfmB = 0, LfNzz = 0, LfCzz = −2D2
zf. (2.16)

The supertranslated vacuum still has zero Bondi mass and Bondi News but it obtains a

finite Czz term. Furthermore, for the curvature to vanish we need to have [27]

Czz = −2D2
zC(z, z̄), (2.17)

where the function C transforms as

LfC = f. (2.18)

The fact that the supertranslations, despite being an asymptotic symmetry, do not leave

the vacuum invariant can be viewed as the spontaneous breaking of that symmetry and C

is labeling inequivalent gravitational vacua, see also [29]. We will return to this important

point later in this section where we observe an analogous effect on the level of Poincaré

subalgebras of B4.

For our further discussion it will be useful to expand supertranslations and superrota-
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tions in the basis of z, z̄ monomials

fmn =
zmz̄n

1 + zz̄
, Rzn = − zn+1, Rz̄n = −z̄n+1. (2.19)

In terms of the basis vectors Tmn = ξ(fmn, 0), ln = ξ(0, Rzn), l̄n = ξ(0, Rz̄n) the algebra

(2.14) takes the form

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0,

[ll, Tm,n] =

(
l + 1

2
−m

)
Tm+l,n, [l̄l, Tm,n] =

(
l + 1

2
− n

)
Tm,n+l. (2.20)

There exist different versions of this algebra in the literature, as is explained in detail in

the next subsection, and which values for l,m, n are allowed depends on which version one

chooses.

One can identify the Poincaré translational generators in Cartesian coordinates as

P0 + P3 = T11, P0 − P3 = T00,

P1 = T10 + T01, P2 = i(T10 − T01), (2.21)

and the boosts and rotations as

J1 = −1

2
(l1 + l−1 + l̄1 + l̄−1), K1 =

i

2
(l1 + l−1 − l̄1 − l̄−1)

J2 =
i

2
(l1 − l−1 + l̄1 + l̄−1), K2 =

1

2
(l1 − l−1 + l̄1 − l̄−1)

J3 = l0 + l̄0, K3 = l0 − l̄0 (2.22)

and the elements {l0, l±1, l̄0, l̄±1T00, T11, T10, T01} therefore form a subalgebra isomorphic

to the Poincaré algebra.

2.1.2 Extensions of BMS and Poincaré subalgebras

Historically, the BMS algebra B4
BMS of Bondi, van der Burg, Metzner, and Sachs was

first defined as the semi-direct sum of the infinite-dimensional abelian algebra of super-

translations s and the Lorentz algebra so(3, 1), i.e. ln, l̄n with n = 0,±1 and Tp,q with

p, q ∈ N

B4
BMS = so(3, 1)⊕S s. (2.23)

This corresponds to the above mentioned case of globally well-defined Killing vectors.

Two extensions of the B4
BMS algebra have been proposed in recent years. In [15] the

algebra is extended by including all ln, n ∈ Z, which implies the inclusion of m,n ∈ Z
the labels of Tm,n as well. The generators of the extended Lorentz algebra ln are referred

to as superrotations. The resulting algebra is referred to as extended BMS algebra and
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is the semi-direct sum of two copies of infinitesimal diffeomorphisms on S1 and extended

supertranslations s∗

B4
ext =

(
Diff(S1)⊕Diff(S1)

)
⊕S s∗, (2.24)

with commutation relations still given by (2.20).

In [30] a different extension has been proposed in which RA is not constrained by the

conformal Killing equation. To this end the condition (3.29) is softened to

LξgAB = O(r2) (2.25)

which allows the leading order of gAB to fluctuate such that it is not identical to the round

metric anymore. In particular this means that in the large r limit one does not obtain the

Minkowski metric and one is thus working with a different notion of asymptotic flatness,

which is explained in detail in [30]. Since RA is not constrained the resulting algebra is

B4
gen = Diff(S2)⊕S s (2.26)

and is referred to as generalized BMS algebra.

Contrary to the classical BMS algebra B4
BMS the extended BMS algebra (2.20) contains

an infinite number of (overlapping) subalgebras generated by the sets of 10 generators{
l0, l±(1−2n), l̄0, l̄±(1−2n), Tn,n, T1−n,n, Tn,1−n, T1−n,1−n

}
with n ∈ Z, which are isomorphic to the Poincaré algebra after rescaling

li →
li
m
, l̄i →

l̄i
m
, (2.27)

where m = 1 − 2n. Note, however, that this is not an automorphism on the entire B4
ext,

e.g.

[l′p, l
′
q] =

1

m
(p− q)l′p+q, l′p =

1

m
lp, (2.28)

which coincides with (2.20) only for m = 1. These Poincaré subalgebras will play an

important role in section 5.4 which is concerned with the κ-deformation of B4
ext. As

we are going to show, these subalgebras lead to a family of so-called twist deformations

parametrized by n.

It is tempting to identify these Poincaré subalgebras with the aforementioned inequiva-

lent vacua. But notice that these subalgebras only exist when one allows for superrotations

whereas the inequivalent vacua are obtained from the original vacuum with C = 0 purely

by supertranslations so this identification is not completely clear. As we are going to see

in the next section these subalgebras also exist in the 3 dimensional case and we are able
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to show explicitly that they are the isometries of inequivalent vacuum solutions.

2.1.3 BMS charges

Before we continue with the discussion of the three-dimensional case we mention, for later

reference, some facts about charges associated with the BMS symmetry. It is well known

that every continuous symmetry of a theory is associated with conserved charges, see

[31] for an interesting review of Noether’s theorem. In a Hamiltonian formulation these

charges generate the symmetry transformation via the Poisson brackets. The same holds

true for the asymptotic symmetries in general relativity, see e.g. [4], with the peculiarity

that the associated charges are given by surface integrals (instead of volume integrals as is

generically the case in a field theory). This has to do with the fact that as a consequence

of the general diffeomorphism invariance of GR the bulk part of the Hamiltonian vanishes

as a constraint. We will have a lot more to say about the Hamiltonian formulation of GR

in section 3.

Since we are interested in asymptotic symmetries at null infinity the charges should

be given as surface integrals at null infinity. This is problematic since due to the presence

of radiative fluxes the charges are in general not actually conserved, which has spawned

a number of proposals to resolve this problem, e.g. [25, 32, 33]. Owing to the different

approaches to this problem in the literature one can find slightly varying expressions for

the BMS charges but for concreteness we cite here [26] (this reference also discusses the

other expressions). Supertranslation and superrotation charges are given therein as

Q =
1

16π

∫
d2Ω

[
4fmB − 2u0R

ADAmB + 2RANA

−1

8
RADA

(
CBCC

BC
)
− 1

2
RACABDCC

BC

]
. (2.29)

2.2 Three-dimensional gravity

2.2.1 Fall-off conditions and BMS algebra

In the case of three-dimensional gravity the discussion of asymptotically flat spacetimes

is similar to the four-dimensional case. One should be aware, however, that despite the

formal similarities of three-dimensional and four-dimensional gravity they are in fact very

different theories. The main difference is that in three-dimensional gravity with a vanishing

cosmological constant every vacuum solution is flat, which is a consequence of the fact

that the Weyl tensor, which describes the only part of curvature that can exist in vacuum,

vanishes identically, see e.g. [34]. In particular this implies that gravitational radiation

does not exist in three-dimensional gravity.

Nonetheless one can impose boundary conditions which define asymptotically flat

spacetimes and investigate the asymptotic symmetries, just as we did in the four-dimensional

10



case. The boundary conditions are chosen to be [28]

ds2 =

(
−1 +

ḡuu
r

)
du2 + 2

(
−1 +

ḡur
r

)
dudr

+

(
h(u, z) +

ḡuz
r

)
dudz −

(
r2

z2
+ ḡzzr

)
dz2 + subleading, (2.30)

where the barred metric components are functions of u = t−r and z = eiφ. The asymptotic

Killing vectors for supertranslations can be parametrized by zn and read [35]

Tn =zn∂u − nzn+1

∫ ∞
r

dr′

r′2
gr′u∂z

+

(
rnzn

∫ ∞
r

dr′

r′2
(ngr′u + ∂zgr′u) +

nzn+1

r
gzu

)
∂r, (2.31)

where the unbarred metric components are the full, r-dependent components, and using

their large r behavior according to (2.30) the supertranslation generators can be written

as

Tn = zn∂u +

(
nzn+1

r
+O(1/r2)

)
∂z −

(
n2zn +O(1/r)

)
∂r. (2.32)

For the superrotations the Killing vectors are, using the same parametrization,

ln =i

(
nuzn∂u −

(
nrzn − uzn2∂z

[
zn
∫
dr′

r′2
gr′u

]
+
n2zn+1

r
guz

)
∂r

+ zn+1

(
1− un2

∫
dr′

r′2
gr′u

)
∂z

)
(2.33)

and using the expansion at large r

ln = izn
(
nu∂u −

(
rn+O(r0)

)
∂r +

(
z +O(r−1)

)
∂z

)
. (2.34)

Setting n = 0,±1 one obtains the generators of the three standard Poincaré translations,

one rotation and two boosts which are related as

∂t = T0, ∂x = T1 + T−1, ∂y = i(T1 − T−1) (2.35)

∂φ = l0, x∂t − t∂x = l1 + l−1, y∂t − t∂y = i(l1 − l−1). (2.36)

At leading order the Killing vectors, under the standard Lie bracket, form a representation

of the abstract infinite-dimensional BMS3 algebra with m,n ∈ Z

[lm, ln] = (m− n)lm+n, [lm, Tn] = (m− n)Tm+n , [Tm, Tn] = 0, (2.37)

which we refer to as B3.
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Notice, that in order for the Killing vectors to form a faithful representation of the

BMS algebra at all orders the Lie bracket has to be modified [28]. This modification arises

because the Tm and lm leave the metric only asymptotically invariant and since they

themselves depend on the metric components one has to take into account the change of

the Killing vectors induced by the change in the metric.

We now introduce, for convenience, lightcone coordinates which are related to Cartesian

coordinates by

x+ =
x0 + x2

√
2

, x− =
x0 − x2

√
2

, x1 = x1 (2.38)

and the three-dimensional Poincaré algebra in lightcone coordinates reads

[M+1,M−1] = iη11M+− , [M+−,M±1] = ∓iη+−M±1 , (2.39)

[M+−, P±] = ∓iη+−P± , [M±1, P1] = −iη11P± , (2.40)

[M±1, P∓] = iη+−P1 , (2.41)

where η+− = η−+ and η11 denote Lorentzian metric components, cf. [36].

2.2.2 Poincaré subalgebras and corresponding vacua

We find that for each n = 1, 2, · · · ∈ N there is an embedding of (2.39)-(2.41) to the

infinite-dimensional Lie algebra (2.37)

M+− = −ıl0 , M±1 = ± ı√
2
l±n , (2.42)

P1 = −ıT0, P± =
ı√
2
T±n , (2.43)

if one identifies η+− = η−+ = −η11 = n. Consider for instance the following commutator

and substitute according to the above embedding

[M+−,M−1]→ 1

2
[ln, l−n] = nl0 = inM+−

and for the other commutators the embeddings can be checked in the same way. Here

we rescaled the metric instead of the generators and as a consequence the algebra (2.37)

to which we embed does not change, which is in contrast to the four-dimensional case.

Instead now the subalgebras (2.39)-(2.41) change since the metric components depend

on n and it is not possible to find embeddings such that both algebras are unchanged.

Therefore it does not really matter if we rescale the metric or the generators, the important

point is that B3 contains infinitely many subalgebras which are isomorphic to the Poincaré

algebra3.

3With the replacement M → nM the n drops out of all the commutators in (2.39)-(2.41) and they are
therefore isomorphic to the Poincaré algebra with η+− = η−+ = −η11 = 1
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Each of these Poincaré subalgebras has its own mass Casimir Cn ≡ ηabPaPb = 2T−nT+n−
T 2

0 , which however is not a central element for the entire B3 (BMS Lie algebra is centreless).

Of course, the identification (2.42) - (2.43) is unique up to an automorphism of the full B3

algebra; e.g. one can apply an involutive automorphism: lm 7→ −l−m, Tm 7→ −T−m . We

can therefore see that B3 can be composed entirely from subalgebras which are isomorphic

to the Poincaré algebra. Moreover, it turns out that they are maximal finite-dimensional

subalgebras of (2.37).

Let us construct explicitly the vacua corresponding to different choices of the Poincaré

subgroup. We take as a starting point the general solution of the vacuum Einstein equa-

tions in Bondi gauge [28]

ds2 = Θ(φ)du2 − 2dudr +
(
uΘ′(φ) + Ξ(φ)

)
dudφ+ r2dφ2, (2.44)

where Θ and Ξ are arbitrary periodic functions of φ. In [28] a further generalization is

considered by allowing metrics with angular part r2e2ϕdφ2, ϕ = ϕ(u, φ) but we consider

here only the case ϕ = 0. Writing this solution using z = eiφ one obtains

ds2 = Θ(z)du2 − 2dudr + (uΘ(z)′ − iΞ(z)z−1)dudz − r2

z2
dz2. (2.45)

Plugging the metric components into (2.31) and (2.33) one obtains for the generators of

supertranslations

Tn = zn∂u −

(
n2zn − nzn+1

r
gzu

)
∂r +

nzn+1

r
∂z (2.46)

and of superrotations

ln = iunzn∂u − i

(
nrzn + un3zn +

un2zn+1

r
guz

)
∂r + izn+1

(
1 +

un2

r

)
∂z. (2.47)

By demanding that the Lie derivative of (2.45) with respect to the generators com-

prising the embeddings vanishes we obtain a metric that is invariant under the action of

these generators. One finds that the only non-vanishing components of the Lie derivative

with respect to Tn and ln are

LTnguu = −n
r
zn+1Θ′, LTnguz = zn−1(Θn+ n3)

Llngur = −2un2zn+1

r2
gzu, Lln = 4un2zn−1gzu. (2.48)

All Lie derivatives vanish for n = 0 and for arbitrary n if we demand Ξ = Θ′ = 0 and

Θ = −n2. Notice that for Θ = −1 we correctly recover invariance only under standard

Poincaré transformations with n = 0,±1. Since the metric is also invariant under the

action of T−n, l−n using the same demands on Θ,Ξ we can conclude that the generators
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T0, T±n, l0, l±n are the exact Killing vectors of the following solution of Einstein vacuum

equations

ds2 = −n2du2 − 2dudr − r2

z2
dz2. (2.49)

This metric can be diagonalized to become

ds2 = −dt2 +
1

n2
dr2 + r2dφ2 ,

which after rescaling r 7→ r/n becomes

ds2 = −dt2 + dr2 + r2n2dφ2 . (2.50)

For n = 1 this is the standard flat space metric, but for n 6= 1 (2.50) is the metric of the

space with conical singularity. This connection between the solutions with a conical defect

and the Poincaré subgroups has previously been noted, using a different formulation, in

[37].
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3 BMS symmetry in the Hamiltonian formulation of general

relativity

3.1 Introduction

In their seminal paper from 1974 Regge and Teitelboim [4] have analyzed asymptotically

flat spacetimes in the Hamiltonian (ADM) formulation of GR. 4 Their main result was

that certain surface integrals at spatial infinity have to be added to the Hamiltonian in

order for Hamilton’s equations to be well defined. These surface integrals are conserved

quantities and form a representation of the Poincaré algebra. They can therefore be un-

derstood as the Noether charge associated with the Poincaré symmetry and in particular

they asymptotically define the total energy-momentum of the system. Since the con-

sidered spacetimes asymptotically approach Minkowski spacetime this appears to be a

well-expected and reasonable result. But in light of the above discussed BMS symmetry

the question arises why the asymptotic symmetries at null infinity are so different from

the ones at spatial infinity. Or are they?

In the recent publication [5] Henneaux and Troessaert revisit the analysis [4] and obtain

finite charges generating BMS supertranslations at spatial infinity. Therefore the asymp-

totic symmetry of asymptotically flat spacetimes, according to [5], is the (unextended)

BMS group. This is in contrast to the original result of [4] where these charges were found

to vanish and the asymptotic symmetry determined to be the Poincaré group and not the

BMS group. The key difference of the two approaches is that Henneaux and Troessaert

make the asymptotic expansion in spherical coordinates that makes it possible for them to

use different parity conditions on the phase space functions than the ones used by Regge

and Teitelboim in their case of Cartesian coordinates expansion. These conditions are a

crucial point of the analysis because they guarantee cancellation of divergences, generally

plaguing expressions for the asymptotic symplectic form and the charges.

The treatments in [4] and [5] have in common that they take as a starting point a

generic asymptotic expansion defining falloff conditions for the spatial metric and its con-

jugate momenta. Here we instead perform a 3+1 decomposition of a spacetime metric in

Bondi coordinates which is asymptotically flat at null infinity, off-shell and fulfills the Bondi

gauge except for the determinant condition. We drop the determinant condition since, as

will be explained in detail, its presence drastically reduces the asymptotic symmetry at

spatial infinity, with spatial (super) translations absent. Using the ADM formalism we

express the expansion of the spatial metric and momenta in terms of the metric functions

and their derivatives. These expressions are then substituted into the symplectic form,

Hamiltonian and diffeomorphism constraint and charges given in [5]. This procedure leads

to two interesting insights.

First, it shows that the falloff conditions on the conjugate momenta translate to the

4The Hamiltonian formulation referred to here is the one by Arnowitt, Deser and Misner (ADM) [38, 39].
There also exists the covariant phase space formulation [32, 40, 41].
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statement that only such spacetimes are allowed that radiate only a finite amount of energy

and are therefore physically reasonable. We furthermore find that with the restriction

to such spacetimes the falloff conditions are sufficient to remove all divergences in the

symplectic structure and there is no need to introduce parity conditions.

Second, we find an asymptotic symmetry at spatial infinity that is larger than the BMS

symmetry. The crucial difference to the treatment of [5] is that we do not impose parity

conditions which leads to non-vanishing charges which correspond to supertranslations

that lie outside of the BMS symmetry. This larger-than-BMS algebra is isomorphic to the

one found by Troessaert [17].

The plan of this chapter is as follows. In the next section we review the ADM formalism

and recall the results presented in [4] and [5]. In the following section 3.4 we compute

the conjugate momenta and express them in terms of the spacetime metric components.

We then closely follow the treatment of [5] and analyze which differences arise when

substituting these expressions for the momenta. Section 3.5 is devoted to the discussion

of the asymptotic symplectic structure, while section 3.6 concerns the Hamiltonian and

diffeomorphism constraint. In section 3.7 we discuss the consequences for the asymptotic

symmetry.

3.2 Review of ADM formalism and the role of boundary terms

3.2.1 ADM formalism

Following [42] we briefly recall the main features of the ADM formalism, which includes as a

crucial ingredient a 3+1 decomposition of spacetime. Such a decomposition is obtained by

introducing a foliation of spacetime into spacelike hypersurfaces Σt, defined by t = const.,

where the only condition on t is that the unit normal nα ∝ ∂αt has to be a future directed

timelike vector field. Further, one introduces a time-evolution vector field tα to define

the direction of time derivatives. The defining condition is tα∂αt = 1, which allows to

interpret the directional derivative tα∂α as ∂t and thus ensures that the direction of time

derivatives is compatible with the meaning of time provided by t.

The vector field tα is usually decomposed into parts tangential and orthogonal to the

spatial hypersurfaces

tα = Nnα +Naeαa , (3.1)

where eαa = ∂xα

∂ya are the tangent vectors on Σt, x
α are coordinates in the full spacetime

and ya are coordinates intrinsic to Σt. N is referred to as lapse and N i as shift. Using

this decomposition of tα one can write

dxa =
∂xα

∂t
dt+

∂xα

∂yα
dya = tαdt+ eαady

a (3.2)
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and for the line element of a generic metric it follows

ds2 = gαβdx
αdxβ = −N2dt2 + hab(dy

a +Nadt)(dyb +N bdt), (3.3)

where the definition of the induced metric

hab = gαβe
α
ae
β
b (3.4)

has been used. The decomposition of the metric (3.3) furthermore implies that

√
−g = N

√
h. (3.5)

Note, that asymptotic flatness demands for lapse and shift to behave asymptotically

as [4, 43]

N = 1 +O(1/r), N r = O(1/r), NA = O(1/r2). (3.6)

Using tα one can define ḣab = £thab and conjugate momenta

πab =
∂

∂ḣab

(√
−gLG

)
, (3.7)

where hab is the induced metric on Σt and LG is the volume part of the gravitational

Lagrangian density defined by the scalar curvature LG = R5. In the 3+1 decomposition

this can be expressed as

√
−gLG =

[
3R+

(
hachbd − habhcd

)
KabKcd

]
N
√
h, (3.8)

where 3R is the scalar curvature associated with hab and the extrinsic curvature Kab is

defined as

Kab = ∇βnαeαae
β
b , (3.9)

with ∇β denoting the covariant derivative with respect to gµν . Now one uses that ḣab can

be written as

ḣab = Lthab = 2NKab +Na|b +Nb|a, (3.10)

which can be solved for Kab to calculate the momenta

πab =
∂Kmn

∂ḣab

∂

∂Kmn

(√
−gLG

)
=
√
h(Kab −Khab), (3.11)

5We are using units with G = c = 1.
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where K = habK
ab. Notice that by this definition the momenta are tensor densities of

weight 1. Later we are going to use this last expression to write the conjugate momenta

in terms of gαβ and its derivatives.

The gravitational Hamiltonian can finally be expressed as

HG =

∫
Σt

[
pabḣab −

√
−gLG

]
d3y

=

∫
Σt

[
N
(
KabKab −K2 − 3R

)
− 2Na∇b

(
Kab −Khab

)]√
hd3y

=

∫
Σt

[NH+NaHa]
√
hd3y (3.12)

which can equivalently be written in terms of momenta

HG =

∫
Σt

[
N√
h

(
πabπ

ab − 1

2
π2

)
− 3R

√
hN − 2Na∇bπab

]
d3y, (3.13)

where ∇b is the covariant derivative with respect to hab. One can now use Hamilton’s

equations to obtain the equations of motion. Using the canonical commutation relations{
hab(x), πcd(y)

}
= δc(aδ

d
b)δ(x, y) (3.14)

one finds that the equation ḣab = {hab, HG} just reproduces (3.10) and for the momenta

one finds from π̇ab = {πab, HG}

π̇ab =−Nh
1
2

(
3Rab − 1

2
hab3R

)
+

1

2
Nhabh−

1
2

(
πmnπ

mn − 1

2
π2

)
− 2Nh−

1
2

(
πamπbm −

1

2
πabπ

)
+ h

1
2

(
∇a∇bN − hab∇m∇mN

)
+∇m

(
πabNm

)
−∇mNaπmb −∇mN bπam.

(3.15)

The momenta conjugate to N,Na are vanishing, since the Lagrangian density does not

contain Ṅ , Ṅa

pN =
∂LG
∂Ṅ

= 0, pa =
∂LG
∂Ṅa

= 0. (3.16)

These are referred to as primary constraints [44], because they arise without involving

the equations of motion. Preservation of the primary constraints introduces secondary

constraints

{pN , HG} = H = 0, {pa, HG} = Ha = 0, (3.17)

which implies that the Hamiltonian (3.12) itself is vanishing as a constraint. This is

characteristic for a theory that exhibits a gauge symmetry and in the present case reflects
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the diffeomorphism invariance of GR. To underline this important point we show that the

transformations generated by the constraint Ha are indeed diffeomorphisms. To this end

we integrate the constraint over with an arbitrary test function ξa

Φ[ξa] =

∫
d3yξaHa

= −2

∫
d3yξa∇bπab

= 2

∫
d3y∇bξaπab,

(3.18)

where in the last line we have integrated by parts and assumed that boundary terms are

vanishing. Transformations are generated via the Poisson bracket

δhab(y) =
{
gab(y),Φ[ξk]

}
= 2

∫
d3y′ξk/`

(
y′
){
hab(y), πk`

(
y′
)}

= ∇jξi +∇iξj = Lξhab,

(3.19)

which we can recognize as the Lie derivative. By its definition the Lie derivative determines

how any tensor changes under an infinitesimal diffeomorphism xi → xi + ξi, which proofs

our initial claim.

In the presence of a boundary, i.e. for non-compact spaces, the Hamiltonian can obtain

non-vanishing contributions in the form of boundary terms, which we have neglected so

far but which will play a crucial role in the following subsection.

3.2.2 The role of boundary terms

To appreciate the role played by boundary terms in the theory we consider again Hamil-

ton’s equations, which are defined as the functional derivatives

ġij =
δH

δπij
(3.20)

π̇ij = − δH
δgij

. (3.21)

These are, by definition, the coefficients of δgij and δπij in the variation of the Hamiltonian

δH =

∫
d3x[Aijδgij + Bijδπij ]. (3.22)

Therefore, for Hamilton’s equations to be defined properly, it is necessary that the variation

of the Hamiltonian can be put into the form of (3.22).

The important observation made by Regge and Teitelboim [4] is that in general this is
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not the case for the Hamiltonian of GR

HG =

∫
d3y

(
ξ⊥H+ ξiHi

)
, (3.23)

where ξ⊥, ξi are again arbitrary test function which parametrize the transformations gen-

erated by the constraints. Instead they found that extra boundary terms appear

δHG =

∫
d3y

[
Aijδgij + Bijδπij

]
+

∫
d2θK(ξ⊥, ξi), (3.24)

which arise from a partial integration, just like the ones we have neglected in (3.18).

These boundary terms depend on ξ⊥, ξi so one might be tempted to declare that only

such functions are allowed for which the boundary terms vanish. In [4] instead another

solution has been proposed that relates the issue of these boundary terms to the asymptotic

symmetries of the system.

The first step of this solution is to define the asymptotic behavior of hab and πab via

boundary conditions, e.g. one demands asymptotic flatness. One then allows only such

transformations ξ⊥, ξ which preserve these boundary conditions. If in the variation of

the Hamiltonian no boundary terms appear, everything is well defined and the associated

transformation are pure gauge. In the case that the boundary terms are not vanishing it

is proposed to redefine the Hamiltonian in the following way. First, one rewrites (3.24) as

δHG =

∫
d3x

[
Aijδgij + Bijδπij

]
− δB(ξ⊥, ξi) (3.25)

and then one defines a new Hamiltonian H = HG+B(ξ⊥, ξi) such that it has well-defined

functional derivatives

δH = δ
(
HG +B(ξ⊥, ξi)

)
=

∫
d3x

[
Aijδgij + Bijδπij

]
. (3.26)

In the presence of a boundary therefore something curious happens, namely certain dif-

feomorphisms seize to be pure gauge transformations since they are generated by a finite

Hamiltonian. Such transformations change the system in a way that is in principle mea-

surable and are referred to as improper gauge transformations. The set of transformations

that leave the boundary conditions invariant and which are generated by a finite Hamil-

tonian are then considered to be the physical asymptotic symmetry of the system.

Of course, there is no guarantee that such a procedure always works. The boundary

terms that arise could be divergent or it might not be possible to write them as a variation,

as is done in (3.25). In the latter case they are referred to as non-integrable. If that is the

case one needs to adjust the choice of boundary conditions and repeat the process.
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3.3 Summary of previous results

Regge and Teitelboim [4] considered asymptotic flat spaces and defined them using asymp-

totic Cartesian coordinates via the expansion

gij = δij +
1

r
h̄ij +O

(
r2
)

πij =
1

r2
π̄ij +O

(
r3
)
.

(3.27)

They then applied the procedure explained above and found that in order to cancel diver-

gences in the charges the following parity conditions have to be imposed

h̄ij(−n) = h̄ij(n), π̄ij(−n) = −π̄ij(n), (3.28)

where n is the unit vector. The resulting asymptotic symmetry then turns out to be

the Poincaré group and the redefined Hamiltonian asymptotically defines the total mass,

momentum, angular momentum and boost charge of the system.

An important remark is that in addition to the standard Poincaré translations and

Lorentz transformations the boundary conditions are also invariant under angle-dependent

translations but the associated charges vanish due to the introduced parity conditions.

This means that, according to [4], the asymptotic symmetry algebra is the Poincaré algebra

since the symmetry under angle-dependent translations is pure gauge, i.e., the charges

associated with these symmetries vanish as a consequence of the chosen parity conditions.

In their paper [5] Henneaux and Troessaert propose different parity conditions which

keep Hamilton’s equations well-defined but are less strict in the sense that they render the

charges associated with angle-dependent translations finite and it is shown that the algebra

of these charges is isomorphic to the BMS algebra. Instead of Cartesian coordinates used

by Regge and Teitelboim in [5] spherical coordinates are employed and the asymptotic

conditions take the form

hrr = 1 +
1

r
h̄rr +

1

r2
h(2)
rr + o(r−2) (3.29)

hrA = h̄rA +
1

r
h

(2)
rA + o(r−1) (3.30)

hAB = r2γ̄AB + rh̄AB + h
(2)
AB + o(1) (3.31)

πrr = π̄rr +
1

r
π(2)rr + o(r−1) (3.32)

πrA =
1

r
π̄rA +

1

r2
π(2)rA + o(r−2) (3.33)

πAB =
1

r2
π̄AB +

1

r3
π(2)AB + o(r−3) (3.34)

while the parity conditions are

λ̄ ∼ π̄AB = even, p̄ ∼ k̄AB ∼ π̄rA = odd, (3.35)
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where

λ̄ =
1

2
h̄rr, k̄AB =

1

2
h̄AB + λ̄γAB (3.36)

p̄ = 2
(
π̄rr − π̄AA

)
, πAB(k) = 2π̄AB. (3.37)

and γAB is the unit metric on the sphere. Although a generic expansion of an asymptoti-

cally flat metric allows the term h̄rA to be finite it is assumed in [5] that

h̄rA = 0 (3.38)

which is necessary in order for the boost charges to be integrable.

The parity conditions are introduced to cancel the following logarithmic divergences

in the Hamiltonian kinetic term, i.e., the symplectic structure∫
dr

1

r

∫
dθdϕ

(
π̄rr ˙̄hrr + π̄AB ˙̄hAB

)
=

∫
dr

1

r

∫
dθdϕ

(
p̄ ˙̄λ+ πAB(k)

˙̄kAB

)
, (3.39)

which is zero when the parity conditions are assumed because the integral over the sphere

of a function with odd parity vanishes. It is furthermore demonstrated that all divergences

occurring in the expressions for the charges can be canceled by imposing that the lead-

ing order of the Hamiltonian and diffeomorphism constraint is vanishing and no parity

conditions have to be involved. The vanishing of the leading order imposes the following

relations

π̄rA = −DBπ̄
BA (3.40)

DAπ̄
Ar = π̄AA (3.41)

DADBk
AB = DAD

Ak, , (3.42)

which arise from HA,Hr and H respectively.

To see how the cancellation of the divergences in the boundary terms works consider

for instance the divergence proportional to Y A, which appears in the term
∫
d2xK in

(3.24) (see [5], Sect. 4 for details of derivation of these terms)∫
d2xKY = −2r

∮
d2xY AγABδπ̄

rB +O(1)

= 2r

∮
d2xYBDCδπ̄

BC +O(1)

= −2r

∮
d2xD(CYB)δπ̄

BC +O(1),

which vanishes since Y A are the Killing vectors on the sphere and thus obey

D(CYB) = 0. (3.43)
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The transformations preserving the above boundary conditions are

ξ⊥ = rb+ F +O
(
r−1
)
, ξr = W +O

(
r−1
)
, ξA = Y A +

1

r
IA +O

(
r−2
)

(3.44)

with

DADBb+ γABb = 0, LY γAB = 0, (3.45)

where b, F,W, Y A are functions on the sphere and IA = 2b√
γ π̄

rA +DAW . The vectors Y A

describe spatial rotations, b Lorentz boosts, f contains time translations through its zero

mode and W contains spatial translations through the l = 1 terms in an expansion in

spherical harmonics. In order for the parity conditions (3.35) to be preserved as well [5]

further assumes

F = −3bλ̄− 1

2
bh̄+ T, (3.46)

where T is an even function on the sphere and W is assumed to be odd. The above defined

transformations ξ form under the bracket

[ξ1, ξ2]M = [ξ1, ξ2]SD + δh,π2 ξ1 − δh,π1 ξ2 (3.47)

the following algebra

ξ̂(Ŷ , b̂, T̂ , Ŵ ) =
[
ξ1 (Y1, b1, T1,W1) , ξ2 (Y2, b2, T2,W2)

]
M
, (3.48)

where

Ŷ A = Y B
1 ∂BY

A
2 + γ̄ABb1∂Bb2 − (1↔ 2) (3.49)

b̂ = Y B
1 ∂Bb2 − (1↔ 2) (3.50)

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1DAW2 − b1DAD

AW2 − (1↔ 2) (3.51)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2), (3.52)

which is shown to be isomorphic to the BMS algebra. In (3.47) [ξ1, ξ2]SD is the surface

deformation bracket defined as

[ξ1, ξ2]⊥SD = ξi1∂iξ
⊥
2 − ξi2∂iξ⊥1 (3.53)

[ξ1, ξ2]iSD = ξk1∂kξ
i
2 − ξk2∂kξi1 + hik(ξ⊥1 ∂kξ

⊥
2 − ξ⊥2 ∂kξ⊥1 ) (3.54)

and δh,π2 ξ1 is given by

δh,π2 ξ1 =
δξ1

δgij
δξ2gij +

δξ1

δπij
δξ2π

ij . (3.55)

The terms of the form δg,π1 ξ2 appear because ξ depends on phase-space functions and

one therefore has to take into account the change of ξ induced by the variation of these

functions.
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The boundary terms found in [5], which correspond to the term
∫
d2xK in (3.24), are∮

d2xKξ = δ

∮
d2x

{
−2Y A

(
h̄ABπ̄

rB + γ̄ABπ
(2)rB + h̄rAπ̄

rr
)

−2
√
γbk(2) −

√
γ̄

1

4
b
(
h̄2 + h̄ABh̄AB

)}
+

∮
d2x

{
−2IAγ̄ABδπ̄

rB − 2Wδπ̄rr

−
√
γ̄(2F + h̄b)δ

(
2λ̄+ D̄Ah̄rA

)
+
√
γ̄
(
h̄rC∂Cbγ̄

AB − bD̄Ah̄rB
)
δh̄AB

}
+ o

(
r0
)
.

(3.56)

It can be seen that the form of F in (3.46) and the assumption h̄rA = 0 guarantee

integrability of the boundary terms. The expression for the charge, which corresponds to

the term B in (3.25), is finally given by

Bξ =

∮
d2x

{
Y A

(
4k̄ABπ̄

rB − 4λ̄γABπ̄
rB + 2γABπ

(2)rB
)

+Wp̄+ T4
√
γλ̄+ b

√
γ
(

2k(2) + k̄2 + k̄AB k̄
B
A − 6λk

)
+ b

2
√
γ
γABπ̄

rAπ̄rB

} (3.57)

and notice in particular that the charges proportional to higher modes of W and T are in

general non-vanishing. Supertranslations are therefore part of the asymptotic symmetry

for the new set of parity conditions.

Our aim is to express, in a first step, the expansions of the spatial metric and conjugate

momenta (3.29)-(3.34) in terms of an asymptotically flat spacetime metric. This will be

done by means of the ADM formalism. In a second step we substitute these expressions into

the symplectic structure (3.39), constraints (3.40)-(3.42) and charges (3.57) and analyze

what are the consequences of this procedure for the asymptotic symmetries.

3.4 Conjugate momenta in terms of spacetime metric components

In this section we are going to perform a 3+1 decomposition of a spacetime metric and

use the ADM formalism to express the momenta in terms of components of this metric

and their derivatives. We consider a metric that is asymptotically flat at null infinity and
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is defined by the following expansion

gµνdx
µdxν =−

(
1− 2M

r
− ḡuu

r2
+O(r−3)

)
du2

− 2

1− ḡur
r
− g

(2)
ur

r2
+O(r−3)

 dudr

+

(
ψA +

1

r
FA +O(r−2)

)
dudxA

+
(
r2γAB + rCAB +DAB +O(r−1)

)
dxAdxB, (3.58)

where γAB is the unit metric on the sphere and all other metric components are functions

of (u, xA). This metric is subject only to the partial Bondi gauge condition

grr = 0, grA = 0 (3.59)

and no further assumptions are made at this stage.

The metric (3.58) is more general than the Bondi metric (2.9), which additionally

fulfills the Einstein field equations and is subject to the determinant condition

det gAB = r4 det γAB, (3.60)

which implies

γABCAB = 0, γABDAB =
1

2
CABCAB. (3.61)

Here we instead start with an off-shell metric and the field equations will be partially

imposed by demanding that the leading order of the Hamiltonian and diffeomorphism

constraint has to vanish. We are not imposing the determinant condition since it leads to

a metric that is too rigid: in subsection 3.7.2 we are going to demonstrate that it excludes

asymptotic translation symmetry.

We choose spacelike hypersurfaces Σt to be defined by

t = u+ r + f(xA) +
g(xA)

r
= const. (3.62)

which means that f and g parametrize the foliation of spacetime that we choose and in
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coordinates (t, r, xA) the metric (3.58) reads

gµνdx
µdxν =−

(
1− 2M

r
− ḡuu

r2
+O(r−3)

)
dt2

+ 2

(
ḡur − 2M

r
+O(r−2)

)
dtdr

+ 2

(
∂Af +

1

2
ψA +O(r−1)

)
dtdxA

+

1 +
2M − 2ḡur

r
+
ḡuu − 2g

(2)
ur

r2
+O(r−3)

 dr2

+

(
−ψA +

(4M − 2ḡur)∂Af − FA
2r

+O(r−2)

)
drdxA

+
(
r2γAB + rCAB +DAB − ∂Af∂Bf − ψA∂Bf

)
dxAdxB. (3.63)

By comparing the form of (3.63) with the decomposition (3.3) we find for lapse and shift

the following expressions

N = 1− M

r
+O(r−2),

Nr =
ḡur − 2M

r
+O(r−2),

NA = ∂Af +
1

2
ψA +O(r−1)

(3.64)

and can identify the leading order terms in the metric expansion (3.29)-(3.31) as

h̄rr = 2M − 2ḡur, h̄rA = −ψA
2
, h̄AB = CAB

h(2)
rr = ḡuu − 2g(2)

ur , h
(2)
rA =

(4M − 2ḡur)∂Af − FA
4

, h
(2)
AB = DAB − ∂Af∂Bf − ψA∂Bf.

(3.65)

As they were defined in (3.58) the spacetime metric functions like M are functions of

(u, xA), which might seem a bit odd since they now appear in the components of the

induced metric hab which is described by components (r, xA). But owing to (3.62) u is

not an independent coordinate and neither is t which is now understood as a parameter

labeling hypersurfaces. In particular this implies that in the large r limit, in which the

expressions (3.65) are defined, we have u → −∞, which is the defining limit for spatial

infinity i0. This limit for u is from now on implied throughout whenever the spacetime

metric functions appear.

The condition (3.38) now takes the form

ψA = 0, (3.66)
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and following the arguments of [5] we will eventually also make this assumption. For the

sake of obtaining a general form for the expressions of the momenta, however, we will keep

ψA finite for now and assume that it is vanishing from section 3.6 on.

Notice that the choice t = u + r + f(xA) + g(xA)
r is the most general one that is

compatible with the fall-off conditions (3.29)-(3.31). Choosing t = u + rk(xA) + O(1)

would lead to

habdy
adyb = dr2(2k − k2 +O(r−1)) + .. (3.67)

which does not agree with the falloff condition (3.29).

The unit normal on the spacelike hypersurfaces is given by

nα = −N∂αt = −
(

1− M

r
+O(r−2)

)
∂α

(
u+ r + f(xA) +

g(xA)

r

)
(3.68)

and using this expression to evaluate (3.9) we find the asymptotic expressions for the

extrinsic curvature

Krr = −∂uM
r

+O(r−2), (3.69)

KrA = − 1

4r

(
− 2∂Aḡur + 4∂AM − 2 (ψA + 2∂Af)

− (ψB + 2∂Bf)γBC∂uCCA − 4∂Af∂uM
)

+O(r−2) (3.70)

KAB =
r

2
∂uCAB +O(r−2). (3.71)

To illustrate the calculation of the above expressions we give some more details for Krr:

Krr = ∇unueur eur +∇rnrerrerr +∇unreur err +∇rnuerreur ,

where eαa = ∂xα

∂ya and from (3.62) we have eur = −1 + O(r−2) and we also know that

err = 1 and eAr = 0. Evaluating the covariant derivatives we find that the leading order

contribution comes from ∇unr = ∂uM
r +O(r−2) which results in the above expression for

Krr. In the same fashion the other components of the extrinsic curvature are obtained.

We have now all the expressions at hand we need to write the momenta in terms of
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the components of (3.58) and find from evaluating (3.11)

πrr =− r

2

√
γγAB∂uCAB +

1

2

√
γ
(
4M− γAB∂uDAB

+ γABDA(2DBf + ψB) +G[∂uCAB]
)

+O(r−1) (3.72)

πrA =
1

4r

√
γ
(
− 2γABDBM+ 2γAB(2DBf + ψB)

+G[∂uM,∂uCAB]
)

+O(r−2) (3.73)

πAB =
1

2r

√
γ

(
2γAB∂uM −

(
γABγCD∂uCCD − ∂uCAB

))
+

1

2r2

√
γ
[
γAB (∂uḡuu − 2M∂uḡur)− (2DADBf +D(AψB))

−
(
γABγCD∂uDCD − ∂uDAB

)
− γAB

2
(γCD(2DCf + ψC)∂uψD)

+ γCD(2DCDDf +DCψD)γAB +G[∂uM,∂uCAB]
]

+O(r−3), (3.74)

where

M = ḡur − 2M (3.75)

and G stands for lengthy terms proportional to either ∂uCAB or ∂uM .

It might seem strange that derivatives over u appear in the above expressions for

the extrinsic curvature and conjugate momenta since they live on a spacelike surface with

coordinates (r, xA). But using (3.62) we could write ∂u in terms of derivatives over (t, r, xA)

and setting in the resulting expressions t = const. we find that the curvature and momenta

are described solely in terms of (r, xA), as they should.

Comparing the expressions (3.72)-(3.74) with the falloff conditions (3.32)-(3.34) we see

that the O(r) term of πrr and the O(r−1) term of πAB should be vanishing. Thus we find

that the falloff conditions translate into the following conditions on the spacetime metric

functions near spatial infinity, i.e. in the limit u→ −∞

∂uCAB ∼ u−(1+ε), ∂uM ∼ u−(1+ε), ε > 0, (3.76)

which provide an extra damping factor so that we can neglect all terms proportional to

them. We therefore only consider such spacetimes that satisfy this condition. As has been

outlined in section 2.1.1 the above derivatives over u are expressing on-shell the rate of

gravitational radiation and the conditions (3.76) can therefore be interpreted such that the

total amount of energy radiated by the system must be finite. This requirement to only

allow such “physically reasonable” spacetimes has already been pointed out in [4](therein

after eq. (2.1)).
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3.5 Finiteness of symplectic structure

The falloff conditions defined in (3.29)-(3.34) are not sufficient to remove divergences in

the symplectic structure ∫
d3xπabḣab, (3.77)

since terms of order O(r−1) appear which are logarithmically divergent in the large r limit

which we consider. As was explained above, after eq. (3.39), the authors of [5] remove these

divergences by introducing parity conditions on the leading order terms in the expansion

of the metric and momenta. The terms which are potentially divergent are the following

ones ∫
dr

1

r

∫
dφdθ

(
π̄rr ˙̄hrr + π̄AB ˙̄hAB + π̄rA ˙̄hrA

)
(3.78)

and we could now impose the parity conditions of [5] and investigate what they imply for

the spacetime metric functions and, since the momenta depend on f(xA), for the foliation

of spacetime.

But using the definition of ḣab (3.10) to express it in terms of the spacetime metric

functions we obtain

˙̄hrr = −2∂uM, ˙̄hrA = 0, ˙̄hAB = ∂uCAB, (3.79)

and we therefore find that the condition (3.76) that we imposed on allowed spacetimes

provides an additional damping and is therefore sufficient, together with the falloff con-

ditions, to make the asymptotic symplectic structure finite. We can therefore conclude

that for the class of spacetimes that we consider no parity conditions are needed to cancel

divergences in the symplectic structure.

3.6 Leading order of constraints

In [5] the leading order of the Hamiltonian and diffeomorphism constraint is assumed

to vanish in order to cancel divergences in the asymptotic charges, as was explained in

subsection 3.3. In this section we show which restrictions on the form of the momenta this

requirement implies. We are also going to assume ψA = 0 from now on.

Substituting (3.73) into (3.41)

√
γ

2
γABDB(2f −M) = −DBπ̄

AB (3.80)

which implies

√
γ

2
γAB(2f −M) = −π̄AB +AγAB

√
γ , (3.81)
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with A being an arbitrary constant. Plugging in (3.74) this equation expresses a relation

between several spacetime metric functions at spatial infinity

γAB

2
(2f −M) =γAB(∂uḡuu − 2M∂uḡur − γCD∂uDCD + 2D2f)

+ ∂uD
AB − 2DADBf. (3.82)

Substituting (3.81) into (3.41) yields

(D2 + 2)(2f −M) = A (3.83)

and upon expanding 2f −M in spherical harmonics Ylm satisfying D2Ylm = −l(l+ 1)Ylm

we find that this equation has a general solution of the form

2f −M = A+
1∑

m=−1

amY1m (3.84)

with am being arbitrary constants.

To summarize, the momenta are now expressed in terms of the spacetime metric func-

tions as

π̄rr =

√
γ

2
(4M+ 2D2f − γAB∂uDAB), (3.85)

π̄rA =

√
γ

2
γABDB(2f −M), (3.86)

π̄AB =

√
γ

4
γAB(2M− 4f +A), (3.87)

subject to the conditions (3.82) and (3.84).

3.7 Asymptotic symmetries

In this section we discuss the asymptotic symmetries of hab and πab, in particular we will

analyze which transformations preserve the falloff conditions (3.29)-(3.34) and the gauge

condition (3.38). This will reproduce the expressions (3.44) and (3.45) which were already

given in [5]. We are giving here the details of this derivation to stress the fact that, as

we are going to show, the preservation of the falloff conditions allows for a large group of

supertranslations parametrized by two arbitrary functions on the sphere. These details are

furthermore needed for our discussion of the determinant condition (3.60) in subsection

3.7.2.

To discuss the asymptotic symmetries we will evaluate the change in the canonical

variables generated by the Hamiltonian H =
∫
d3x(ξ⊥H + ξaHa) which is given by, see
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[39]

δξhab = 2ξ⊥h−1/2

(
πab −

1

2
habπ

)
+ Lξhab. (3.88)

δπab =− ξ⊥h
1
2

(
Rab − 1

2
habR

)
+

1

2
ξ⊥habh−

1
2

(
πmnπ

mn − 1

2
π2

)
− 2ξ⊥h−

1
2

(
πamπbm −

1

2
πabπ

)
+ h

1
2

(
ξ⊥|ab − habξ⊥|m|m

)
+
(
πabξm

)
|m
− ξa|mπ

mb − ξb|mπam,

(3.89)

where Lξhab is the Lie derivative

Lξhab = ξa|b + ξb|a. (3.90)

3.7.1 Preservation of falloff and gauge conditions

From the preservation of the falloff conditions (3.29)-(3.31) we obtain the demands

δhrr = O
(
r−1
)
, δhrA = O(1), δhAB = O(r) (3.91)

and we now want to find such ξ⊥, ξa that the change of hab defined in (3.88) obeys them.

Using the expansion of Christoffel symbols associated with hab

ΓrAB = −rγ̄AB +O(1) (3.92)

ΓABC = Γ̄ABC +O(r−1) (3.93)

ΓrrA =
1

2r

(
∂Ah̄rr + ψA

)
+O(r−2) (3.94)

Γrrr = − h̄rr
2r2

+O(r−3) (3.95)

ΓArB =
1

r
δAB +O(r−2) (3.96)

ΓArr = − γ̄
AB∂Bh̄rr

2r3
+O(r−3), (3.97)

we find the following transformation of hrr

δhrr =
2ξ⊥
√
γr2

(
π̄rr −

1

2
h̄rrπ̄

)
+ ξA∂A

h̄rr
r

+ 2∂rξ
r − 2ψA∂rξ

A + (subleading), (3.98)

where

π̄ = π̄rr + γABπ̄
AB. (3.99)
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Comparing this with (3.91) we find that a large r expansion of ξ⊥, ξa has to be of the form

ξ⊥ = rb+ F +O(r−1),

ξA = Y A +
1

r
IA +O(r−2),

ξr = W +
1

r
ξr1 +O(r−2),

(3.100)

where all terms in this expansion are functions on the sphere.

The transformation of hrA

δhrA =
2b
√
γ
π̄rA −

1

2
Y BDBψA + ∂AW

− 1

2
ψBDAY

B
0 − γABIB + (subleading) (3.101)

does not give any further restrictions on ξ⊥, ξa.

To fulfill the demand that δhAB

δhAB =r2D(AYB)

+ r
(

2WγAB + Y CDCCAB + ψ(BγA)CY
C

+ 2CC(BDA)Y
C + 2γC(BDA)I

C +
2b
√
γ

(
π̄AB −

1

2
γABπ̄

)
(3.102)

is of order O(r) we have to assume that Y B are the Killing vectors on the 2-sphere

D(AYB) = 0. (3.103)

So far there are no restrictions on b but it is fixed from the preservation of the asymp-

totic form of momenta which demands

δπrr = O(1), δπrA = O(r−1), δπAB = O(r−2). (3.104)

One can check that there are no new restrictions coming from the first two conditions in

(3.104). The third one, however, does lead to a new restriction and reads

δπAB = r2√γ
(
∇A∇Bξ⊥ − hAB∇i∇iξ⊥

)
+ (subleading)

=

√
γ

r2

(
γACγAD∇C∇Dξ⊥ − γABγCD∇C∇Dξ⊥

)
+ (subleading). (3.105)
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Now consider(we use the notation ∇A = DA + (subleading))

∇C∇Dξ⊥ = r∂C∂Db− ΓrCD∂r(rb)− rΓACD∂Ab+O(1)

= rDCDBb+ rγCDb, (3.106)

where we used (3.92) and plugging this back into the previous equation we obtain

δπAB =
1

r

(
DADBb− γABD2b− γABb

)
+O(r−2). (3.107)

Vanishing of the leading order therefore imposes the condition

DADBb− γABD2b− γABb = 0⇒ D2b = −2b (3.108)

and therefore we find that b has to satisfy

DADBb+ γABb = 0 , (3.109)

whose only solution is b being a linear combination of three l = 1 harmonics with constant

coefficient.

Now we consider the preservation of the gauge condition h̄rA = 0. From (3.101) one

can directly see that in order to have δh̄rA = 0 we need to assume

IA = DAW +
2b
√
γ
π̄rA, (3.110)

which means that the preservation of the gauge choice

h̄rA = −1

2
ψA = 0, (3.111)

determines the subleading term of ξA.

To summarize, F and W are not constrained by the boundary conditions and are

associated with angle-dependent translations, temporal and spatial ones, respectively. Y A

are the three Killing vectors on the sphere parametrizing rotations and b contains only

l = 1 harmonics and parametrizes three boosts. Except for the assumptions of parity on

W and F we have therefore reproduced the asymptotic symmetry transformations given in

[5] and the corresponding surface terms are therefore identical with (3.56), which has been

derived for F,W having no definite parity. Integrability of these surface terms demands

that F is of the form F = −1
2 h̄b+T (xA), where T (xA) is a general function on the sphere.

Any function of λ̄ could be added to F without spoiling integrability, which introduces an

ambiguity in the expression of the charges. We choose for F the form (3.46).

In [5] it is shown that transformations with W=odd, T=even form an algebra isomor-

phic to the BMS algebra found at null infinity. The odd and even functions combine to

give the single function parametrizing supertranslations at null infinity. Since we do not
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involve any parity conditions it appears that the resulting asymptotic symmetry is larger

than the BMS symmetry, as long as the associated charges are finite. Before proceeding

with the discussion of the charges, however, we turn to the aforementioned determinant

condition.

3.7.2 Determinant condition and reduction of symmetry

In the previous subsection we have found that a large group of supertranslations and

Lorentz transformations preserve the falloff conditions (3.29)-(3.34). We are now going

to demonstrate that the determinant condition (3.60) is not preserved by spatial (super)

translations.

The determinant condition implies, see (2.5)-(2.7)

γABCAB = 0 (3.112)

and transformations preserving this condition must fulfill

δ(γABCAB) = γABδh̄AB = 0, (3.113)

where we have used that δγAB = 0 and CAB = h̄AB. Substituting (3.102) we find

γABδh̄AB = 2(D2 + 2)W +
4
√
γ
DA(bπ̄rA)− 2b

√
γ
π̄rr = 0 (3.114)

and using the expressions for the momenta (3.85) and (3.86) we obtain

2(D2 + 2)W = −2DA(bDA(2f −M)) + b(4M+D2f − γAB∂uDAB). (3.115)

This equation has no solution for W since the RHS is in general non-vanishing and in-

evitably contains l = 1 harmonics6 which can not be produced by the LHS.

We can therefore conclude that spatial translations, i.e. standard Poincaré ones and

supertranslations, do not preserve the condition (3.112). Imposing this condition would

therefore drastically reduce the asymptotic symmetries.

3.7.3 Discussion of charges

In the previous subsections we found that the asymptotic symmetry appears to be larger

than the BMS symmetry at null infinity because there are two arbitrary functions on the

sphere parametrizing translations. In the treatment of [5] the charges associated with

transformations outside of BMS are vanishing due to the imposed parity conditions and

these transformations are therefore pure gauge. Here we show that in our treatment all

the charges associated with T and W are in fact non-vanishing. We will also check that

the boost and rotational charges are all non-vanishing.

6In fact b purely consists of l = 1 harmonics and (2f −M) of l = 0, 1 harmonics.
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To obtain the form of the charges in terms of the spacetime metric functions we can

use the expression (3.57) because it has been derived for general T,W , which corresponds

to the case that we are considering. We then only need to substitute the expressions for

hab and πab, which we have already obtained from the 3+1 decomposition. From (3.57)

the charges associated with translations are given as

BT,W =

∮
d2x{2T√γh̄rr + 2W

(
π̄rr − π̄AA

)
}, (3.116)

the boost charges are

Bb =

∮
d2x

[
b
√
γ
(

2k(2) + k̄2 + k̄AB k̄
B
A − 6λk

)
+ b

2
√
γ
γABπ̄

rAπ̄rB

]
(3.117)

and finally the rotational charges

BY =

∮
d2xY A

(
4k̄ABπ̄

rB − 4λ̄γABπ̄
rB + 2γABπ

(2)rB
)
, (3.118)

where k(2) is defined via the expansion

KA
B = hACKBC = −1

r
δAB +

1

r2
k̄AB +

1

r3
k

(2)A
B +O

(
r−3
)

(3.119)

KAB =
1

2λ
(−∂rhAB +∇AhrB +∇BhrA) (3.120)

λ =
1√
hrr

. (3.121)

Substituting the expressions for the momenta (3.85) and (3.87) into (3.116) yields for the

translational charge

BW,T =

∮
d2x
√
γ{T2h̄rr +

W

2
(2M+ 2(D2 + 2)f − γAB∂uDAB −A)} (3.122)

and using the condition (3.84) we can eliminate f and A from this expression and obtain

BW,T =

∮
d2x
√
γ{T2h̄rr +

W

2
((D2 + 4)M− γAB∂uDAB)}. (3.123)

As a quick sanity check we calculate the ADM mass, obtained from the above expres-

sions for T = 1,W = 0, for the outgoing Vaidya spacetime

ds2 = −
(

1− 2m(u)

r

)
du2 − 2dudr + r2dΩ2 (3.124)

which can be thought of as a radiating generalization of Schwarzschild spacetime. It is a

solution of Einstein equations with energy-momentum Tuu = −dm/du
4πr2

. The ADM mass of
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the Vaidya spacetime according to (3.123) is

mADM = 16π lim
u→−∞

m(u), (3.125)

which is indeed the correct expression, see for example chapter 4.3.5 in [42](which agrees

up to the normalization factor of 16π).

To investigate which modes of T,W lead to finite charges we expand them and the

metric functions in spherical harmonics and use their orthonormality and the fact that

any spherical harmonic by itself vanishes when integrated over the sphere. This implies

that the only finite terms are the ones where each factor has a contribution from the same

mode. If h̄rr, for instance, was a constant then the first term in the above charge would

only have a non-vanishing contribution from the zero mode of T . We can therefore see

that there are finite contributions from all modes of T and W present, since only the

combination f − 2M is constrained to l = 0 and l = 1 modes but M itself contains in

general contributions from all modes and so does h̄rr.

Next we are going to write the rotation and boost charges in terms of the spacetime

metric functions and in doing so we will specialize to the case f = const. and g = const..

We make this choice since otherwise these expressions are very lengthy and it is justified

because it does not affect whether the charges are vanishing or not7, which is the only thing

that we want to check. For f = const., g = const. we find for the subleading contribution

to πrA

π(2)rA =

√
γ

4

(
DAMγABCAB − 4CABDBM+ 3FA

− 2DAg(2)
ur + 2DAḡuu − 2DAM∂uḡuu − 4MDAḡur

+ 16MDAM − 2ḡurD
Aḡur

)
(3.126)

(3.127)

and together with

4k̄ABπ̄
rB − 4λ̄ = −2CABD

BM (3.128)

we therefore find that the rotational charge (3.129)

BY =

∮
d2xY A

(
−2CABD

BM+ 2γABπ
(2)rB

)
(3.129)

is indeed non-vanishing for all modes of Y A since FA and M contain in general contri-

butions from all modes of spherical harmonics. Allowing for general f and g would not

change this conclusion(even if they do not drop out) in particular because there is no

condition that would relate FA to either of these functions.

7In fact one would expect that f and g drop out of the expressions for the boost and rotational charges
since they should be independent of the foliation just as they dropped out of the supertranslation charge.
However, since these expressions are for general f and g rather complicated we have not been able to show
this.

36



To obtain the expression for the boost charge (3.117) we first evaluate (3.120) and

(3.121) using (3.65) and find

KAB =
1

2λ

(
−2rγAB − CAB −

1

2r
D(AFB)

)
+O(r−4) (3.130)

and

1

λ
= 1− h̄rr

r
+
L

r2
+O(r−3), (3.131)

where

L = −4ḡuu + 12(Mḡur +M2) + 8g(2)
ur . (3.132)

To calculate k(2) from (3.119) we also need

hAB =
1

r2
γAB − 1

r3
CAB +

1

r4

(
CADC

DB −DAB
)

+O(r−5) (3.133)

and find

k(2) = 2γABD
AB − CABCAB − 4L−DAF

A (3.134)

and finally obtain for the boost charge

Bb =

∮
d2x
√
γb
(
DAMDAM+ 2γABD

AB − 4L−DAF
A

+
1

4
(γABC

AB)2 − 3

4
CABC

AB − 3

2
h̄2
rr −

5

2
γABC

ABh̄rr

)
. (3.135)

Again we can see that the charge is finite for all modes of b since FA,M and h̄rr contain

contributions from all modes.

3.7.4 Discussion of the asymptotic symmetry

From our discussion of the charges it has become clear that the asymptotic symmetry we

find at spatial infinity is larger than the BMS symmetry. The crucial difference to the

results of [5] is that the charges associated with even W and odd T are non-vanishing.

A larger-than-BMS asymptotic symmetry at spatial infinity has been found previously

by Ashtekar and Hansen [24]. The Spi algebra they find has the same structure as BMS,

namely a semi-direct product of the abelian ideal of supertranslations and the Lorentz

algebra. The difference lies in the size of the supertranslation ideal, which for the BMS

algebra corresponds to functions on the 2-sphere whereas for Spi it corresponds to functions

on the three-dimensional hyperboloid.

Also Troessaert [17] finds an asymptotic symmetry at spatial infinity which is larger

than BMS, but smaller than the Spi algebra. By additionally assuming that the spacetime

metric considered therein has to be asymptotically flat not only at spatial infinity but also
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at null infinity conditions on the metric functions are found which reduce the algebra to

one that is isomorphic to the BMS algebra. This algebra is then in turn shown by [5] to

be isomorphic to the algebra (3.48) with odd W and even T . A fact that has not been

stressed therein, although it is implicit, is that the algebra (3.48) with arbitrary W and

T is isomorphic to the one found by [17] before cutting it down to BMS. Following the

explanations in the appendix of [5] this can be seen as follows.

Troessaert [17] finds the following asymptotic algebra

[(
Y1, ω

′
1

)
,
(
Y2, ω

′
2

)]
=

(
[Y1,Y2] ,Ya1∂aω′2 −

s

2
ψ1ω

′
2 − (1↔ 2)

)
=
(
Ŷ, ω̂′

)
, (3.136)

where xa = (s, xA) are coordinates on the unit hyperboloid, Ya represents the Lorentz

algebra, ω′ =
√

1− s2ω and ω(xa) parametrize a sub-set of Spi supertranslations [24]. Full

Spi supertranslations would be given by general functions ω(xa) but, as [17] explains, to

remove divergences in the symplectic structure one has to demand

(DaDa + 3)ω = 0. (3.137)

The general solution of this equation is shown to be of the form

ω =
1√

1− s2

(
ω̂even + ω̂odd

)
ω̂even =

∑
l,m

ω̂VlmVl(s)Y
0
lm

(
xA
)
, ω̂odd =

∑
l,m

ω̂WlmWl(s)Y
0
lm

(
xA
)
,

(3.138)

where odd and even refers to the combination of time reversal s → −s and antipodal

mapping xA → −xA and Vl(s),Wl(s) are defined in terms of Legendre polynomials and

Legendre functions of the second kind.

Rotations are parametrized by Killing vectors on the 2-sphere YAR (xA)

Ys = 0, YA = YAR (3.139)

and boosts by ψ(xA) such that D2ψ + 2ψ = 0

Ys = −1

2

(
1− s2

)
ψ, YA = −1

2
sγAB∂Bψ. (3.140)

One can check that the Lorentz algebras in (3.136) and (3.48) are isomorphic under

the identification YAR = Y A and ψ = 2b. The action of the Lorentz algebra on ω′ in (3.136)

can then be written as

ω̂′ = Y A
1 ∂Aω

′
2 − sb1ω′2 − s∂Ab1∂Aω′2 −

(
1− s2

)
b1∂sω

′
2 − (1↔ 2). (3.141)

The connection with the form of the algebra in the ADM description in (3.48) can be
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made by defining W,T as initial conditions at s = 0

ω|s=0 = ω′
∣∣
s=0

= W
(
xA
)
, ∂sω|s=0 = ∂sω

′∣∣
s=0

= T
(
xA
)
. (3.142)

One can check from the definitions of Vl(s) and Wl(s) that ω|s=0 and ∂sω|s=0 contain

contributions from all modes of spherical harmonics and that therefore W and T such

defined are arbitrary functions on the sphere. Substituting these definitions in (3.141) one

obtains

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2), (3.143)

which is equal to the corresponding expression in (3.48).

Acting with the s derivative on (3.141) yields

∂sω̂
′ =Y A

1 ∂A∂sω
′
2 − b1ω′2 − sb1∂sω′2 − ∂Ab1∂Aω′2 − s∂Ab1∂Aω′2

+ 2sb1∂sω
′
2 − (1− s2)b1∂

2
sω
′
2 − (1↔ 2). (3.144)

The expression for ∂2
sω
′∣∣
s=0

can be obtained from

(DaDa + 3)ω = −
(

1− s2
)2
∂2
sω +

(
1− s2

)
D2ω + 3ω = 0 (3.145)

and first one has

∂2
sω
∣∣∣
s=0

= D2ω
∣∣∣
s=0

+ 3ω|s=0 (3.146)

and together with

∂2
sω
′
∣∣∣
s=0

= −ω|s=0 + ∂2
sω
∣∣∣
s=0

(3.147)

one finally has

∂2
sω
′
∣∣∣
s=0

= 2ω|s=0 + D2ω
∣∣∣
s=0

. (3.148)

Substituting this and the above definitions in (3.144) and evaluating at s = 0 one finally

obtains

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1DAW2 − b1D2W2 − (1↔ 2), (3.149)

which is exactly of the form given in (3.48).

To summarize, since we do not impose parity conditions we find an asymptotic sym-

metry at spatial infinity that is larger than the BMS algebra but smaller than the Spi

algebra. Our result would therefore suggest that the tension arising from the presence of

different asymptotic symmetries at spatial infinity and null infinity still remains.
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4 Gauging BMS

4.1 Introduction

This section is concerned with the relation of GR and gauge theories. That there is such a

relation is not obvious in the usual coordinate based description but it becomes apparent

in the so-called vielbein formulation, which uses basis vectors which are not obtained from

a coordinate system. Using this formulation one can for instance show that the curvature,

i.e. the Riemann tensor, takes the form of the field strength tensor known from gauge

theories. Since this formalism is the basis for everything that follows in this section we

will shortly review it in subsection 4.2.

It was shown by Witten [6], see also [45], that in 2+1 dimensions GR is equivalent to

a gauge theory with the Poincaré group as gauge group and with a pure Chern-Simons

action. Such a gauge theory is essentially like an ordinary Yang-Mills theory, but with an

action of the form
∫
AdA+A∧A∧A instead of the Yang-Mills action. This construction

does not work in 3+1 dimensions since the Einstein-Hilbert action does not take the form

of an action of a gauge theory in that case and for this reason we will be working in

2+1 dimensions throughout this section. In the usual picture of gauge theories Witten’s

construction can be understood as follows. In the absence of gravitational fields the

underlying spacetime symmetry is the global Poincaré symmetry. If we want to construct a

physical theory that is invariant under local Poincaré transformations we have to introduce

new fields which compensate additional terms arising from this localization or gauging. It

then turns out that these new fields represent the gravitational interaction.

The special role of the Poincaré group played in all this comes from the fact that it

is the symmetry of spacetime in the absence of the gravitational field. However, we have

seen in the previous section that when one considers the symmetry of spacetimes far away

from any gravitational sources one in fact obtains an infinite dimensional generalization

of the Poincaré group, the BMS group. Originally this result has been established at null

infinity but recently it was shown at spatial infinity as well, see [5, 17] and as we have

reviewed in section 3.3. This establishes BMS8 as the symmetry of spacetime in the limit

of a vanishing gravitational field.

Motivated by this observation we investigate in subsection 4.3 whether one can, in 2+1

dimensions, construct a gauge theory of gravity based on the algebra B3 defined in (2.37)

instead of the Poincaré algebra. We are also going to discuss the asymptotic symmetry

group of asymptotically Anti-de Sitter spacetimes, AdS3 for short, as another potential

gauge group.

The result, however, will be largely a negative one: the only gauge invariant action one

can construct does not contain any gauge fields beyond the ones found in the standard

Poincaré case.

8Our results of the precious section suggest that the asymptotic symmetry at spatial infinity might be
even larger than BMS. However, since the BMS algebra is more established we will focus on it in this
section.
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4.2 Vielbein formalism

In this brief overview of the vielbein formalism we follow the explanations in [46]. A

natural choice for the basis of the tangent space of a manifold at point p are the partial

derivatives ê(µ) = ∂µ with respect to the coordinates at that point. But same as well

one can choose a different basis that is not related to a coordinate system and is given at

each point of the manifold by basis vectors ê(a). We choose the set of basis vectors to be

orthonormal so that for their inner product we have

g(ê(a), ê(b)) = ηab, (4.1)

where g is the metric tensor and ηab the Minkowski metric. The old basis vectors can be

expressed in terms of the new ones by

ê(µ) = eaµê(a), (4.2)

where the eaµ are referred to as vielbeins, or in four dimensions as tetrads and in three as

triads. Using the vielbeins any tensor can be written in the new orthonormal basis, in

particular we have for the metric tensor

gµνe
µ
ae
ν
b = ηab (4.3)

and the vielbeins can therefore also be understood as a mapping to flat spacetime, which

locally is always possible.

The covariant derivative of a tensor with components written in the vielbein basis is

defined using the spin connection ωaµb, for example

∇µXa = ∂µX
a + ωaµbX

b, (4.4)

where the spin connection ω is related to the usual connection Γ as follows

ωaµb = eaνe
λ
bΓνµλ − eλb ∂µeaλ. (4.5)

Curvature and torsion are defined in terms of the vielbein and spin connection as

Rabµν = ∂µω
ab
ν − ∂νωabµ + ωaµcω

cb
ν − ωaν cωµcb (4.6)

and

T aµν = ∂µe
a
ν − ∂νeaµ + ωaµb

b
ν − ωaνbebµ. (4.7)

Expressed in terms of the vielbein and spin connection one-forms

ea = eaµdx
µ, ωab = ωabµ dx

µ (4.8)
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they take the form

Rab = dωab + ωac ∧ ωbc, T a = dea + ωab ∧ eb. (4.9)

Notice that curvature and torsion take the form of a field strength tensor in gauge theories

with ea and ωab as gauge fields. The familiar expressions for Riemann and torsion tensor

can be obtained by switching to greek indices

T ρµν = eρaT
a
µν , Rρσµν = eρaeσbR

ab
µν . (4.10)

Finally, the Einstein-Hilbert action written in terms of vielbeins and the spin connection

reads in four dimensions

I4d =
1

2

∮
d4xεµνρσεabcde

a
µe
b
νR

cd
ρσ (4.11)

and in three dimensions

I3d =
1

2

∮
d3xεµνρεabce

a
µR

bc
νρ. (4.12)

4.3 BMS gauge theory

4.3.1 Definition of gauge fields and transformation laws

In this subsection we investigate whether one can construct a gauge theory based on the

BMS instead of the Poincaré group in 2+1 dimensions. We do so by generalizing the

construction of Witten [6], which takes as a starting point the Poincaré algebra in the

form

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0 (4.13)

and expands the gauge fields in the generators of this algebra

Ai = eai Pa + ωai Ja, (4.14)

where we are writing indices µ, ν now as i, j to indicate that we are working in 2+1

dimensions. The vielbein eai and spin connection ωai = εabcωibc are then interpreted as the

gauge fields of the theory.

Instead of the Poincaré we take as a gauge group the BMS group defined by the

commutation relations (2.37) and expand gauge fields Ai accordingly as

Ai = emi tm + ωmi lm, (4.15)
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with m ∈ Z and similarly expand the infinitesimal gauge parameter u

u = ρmTm + τmlm. (4.16)

The case when m = 0,±1 corresponds to the standard Poincaré sector and we will occa-

sionally refer to gauge fields outside of this sector as “higher gauge fields”.

The variation of the gauge fields under a gauge transformation is defined as

δAi = −∂iu− [Ai, u] (4.17)

and upon evaluation we find the following transformation laws

δemi = −∂iρm + (2n−m)
(
em−ni τn + ωm−ni ρn

)
(4.18)

δωmi = −∂iτm + (2n−m)ωm−ni τn. (4.19)

The field strength tensor is defined as

Fij = ∂iAj − ∂jAi + [Ai, Aj ] (4.20)

and evaluating the commutator yields

Fij = Smij Tm +Rmij lm

=

(
∂ie

m
j − ∂jemi + (m− 2n)

(
em−ni ωnj + ωm−ni enj

))
Tm

+
(
∂iω

m
j − ∂jωmi + (m− 2n)ωm−ni ωnj

)
lm. (4.21)

Notice that Smij and Rmij take the form of torsion and curvature defined in (4.6) and (4.7)

but with generalized indices m,n. The curvature transforms under a gauge transformation

as

δFij = −[Fij , u] (4.22)

which yields the following transformations laws

δSmij = (2n−m)
(
Sm−nij τn +Rm−nij ρn

)
(4.23)

δRmij = (2n−m)Rm−nij τn. (4.24)

4.3.2 Discussion of invariant form and construction of action

With these definitions at hand the next step is to construct a B3 gauge invariant Chern-

Simons action, as before we closely follow the construction of [6]. The crucial ingredient

for this construction is an element which is invariant in B3 (2.37), i.e. an element that

commutes with all the generators also known as Casimir. In the case of the Poincaré
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algebra (4.13) such an element is given by W = JaPa. However, for B3 no such element

is known to exist9. In a strict sense it is therefore not possible to construct a BMS gauge

theory which would be on the same footing as the one based on the Poincaré group. Instead

we construct the action using the invariant element from the Poincaré algebra which. As

we will see in a moment, the resulting action generically contains higher gauge fields. But

this action is not going to be invariant under all the transformations parametrized by

(4.16). Our strategy will be to find the smallest set of gauge fields and transformation

which we have to assume to vanish in order to restore gauge invariance.

The construction of the Chern-Simons action starts with the expression

I =

∫
Fm ∧ Fndmn, (4.25)

where dmn is an invariant quadratic form, in our case of the Poincaré group. The symbol

Fm can stand for either Sm or Rm, depending on whether the l or T component is picked

by dmn. To determine dmn one observes that the following combination of generators

W = lmTnd
mn = l0T0 −

1

2
(l−1T1 + l1T−1) (4.26)

is invariant under Poincaré transformations and by inverting dmn we find for dmn

< l0, T0 >= 1, < l−1, T1 >= −2, < l1, T−1 >= −2. (4.27)

Evaluating (4.25) one finds for the action∫
Y
S0 ∧R0 − 2(S−1 ∧R1 + S1 ∧R−1), (4.28)

where Y is a four manifold. To obtain from this the Chern-Simons action the integrand

has to be written as a total derivative and upon using the divergence theorem the action

reduces to an integral on a three manifold M

I =

∫
M
e0 ∧R0 − 2

(
e−1 ∧R1 + e1 ∧R−1

)
. (4.29)

From the definition of the curvature (4.21) one can see that R0,±1 contains gauge fields

outside of the Poincaré sector. By construction this action is invariant under the Poincaré

group if all higher gauge fields are vanishing but it could potentially exhibit a larger

symmetry.

To check whether this is the case we calculate the variation of the action and applying

9As stated in [47] no classification of the Casimirs of B3 is known. However, therein an argument
is made that the only Casimirs of B3 are so-called central charges. These are not constructed from the
generators of the algebra, they instead arise from a certain extension of the algebra, and are therefore not
of interest for us.
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the transformation laws (4.18) and (4.24) we obtain

δI = 2

∫
d3xεijk

[1

2

(
2ne−ni τn + 2nω−ni ρn − ∂iρ0

)
R0
jk + ne0

iR
−n
jk τ

n

−
(

(1 + 2n)e−1−n
i τn + (1 + 2n)ω−1−n

i ρn − ∂iρ−1
)
R1
jk + (1− 2n)e−1

i R1−n
jk τn

+
(

(1− 2n)e1−n
i τn + (1− 2n)ω1−n

i ρn + ∂iρ
1
)
R−1
jk − (1 + 2n)e1

iR
−1−n
jk τn

]
, (4.30)

where each line is of the form δe∧R+ e∧ δR and all n ∈ Z. For the action to be invariant

its variation has to vanish.

Even though the construction of the action guarantees Poincaré gauge invariance if

higher gauge fields are vanishing, this invariance is not immediately obvious. In a first step

we therefore check that the variation of the action indeed vanishes when we restrict gauge

fields and transformations to the Poincaré case, i.e. when we assume that eni , ω
n
i , ρ

n, τn

and Rnij vanish for n 6= ±1, 0. In a second step we will consider the general case by allowing

all transformations and gauge fields to be finite.

One can directly see that in the Poincaré case the terms containing eni cancel in (4.30).

In order to see that the remaining terms cancel as well we plug in the definition of Rnjk
from (4.21) and for terms not containing any derivatives we find

−εijkρnωnk
[
4n2ω−ni ω−nj + (1− 4n2)

(
ω−1−n
i ω1−n

j + ω1−n
i ω−1−n

j

)]
, (4.31)

and since the first term and the term in brackets are symmetric in i, j and are contracted

with the fully antisymmetric tensor they both vanish. For the terms containing derivatives

we obtain after performing several integrations by parts and rearrangement of indices the

remaining terms, up to boundary terms

2εijk
[
ρn
(
−(1 + 2n)ω−1−n

i ∂jω
1
k + (1− 2n)ω1−n

i ∂jω
−1
k + nω−ni ∂jω

0
k

)
− nρ0ωni ∂jω

−n
k + (1 + 2n)ρ1ωni ∂jω

−1−n
k − (1− 2n)ρ−1ωni ∂jω

1−n
k

]
, (4.32)

which also cancel. Thus the action (4.29) is indeed Poincaré gauge invariant and we

proceed now with the general case.

If we assume all fields and transformations to be finite there are several non-vanishing

terms in the variation of the action, which means that the action build from the most

general gauge fields is not invariant under general B3 transformations. We can, however,

introduce constraints, i.e. demands that certain fields and transformations are vanishing,

that let the variation vanish for an action that contains as many higher gauge fields as

possible and is invariant under transformations which are as general as possible. Consider

in (4.30) the term

ne0
iR
−n
jk τ

n (4.33)
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which can not cancel(except in the Poincaré case, of course) with any of the other terms

and we thus have to constrain either Rxjk = 0 or τx = 0, where x denotes all n except for

n = ±1, 0. Similarly from the term

ne−ni τnR0
jk (4.34)

we find the constraint exi = 0 or τx = 0. Another constraint comes from terms like

(1 + 2n)e−1−n
i τn, (4.35)

since exi = 0 still allows a term −3e1
i τ
−2. The terms proportional to τ±2 do not cancel

and we therefore need to impose τ±2 = 0. The terms in (4.31) vanish without imposing

further constraints. From the term in (4.32)

−nρ0ωni ∂jω
−n
k (4.36)

we have ωxi = 0, since it can not cancel with any other term. This constraint makes the

remaining terms in (4.32) vanish as well. To see this consider the term

−(1 + 2n)εijkρnω−1−n
i ∂jω

1
k, (4.37)

where ωxi = 0 allows a term εijk3ρ−2ω1
i ∂jω

1
k, which vanishes because ω1

i ∂jω
1
k is symmetric

in i, k. The other terms vanish similarly without having to constrain ρ. From the condition

ωxi = 0 it follows that Rxij = 0 as can be seen from the definition (4.21).

To summarize, there are two different choices of constraints to restore invariance of

the action (4.29)

Rnij = eni = ωni = τ±2 = 0 or Rnij = e±2
i = ωni = τn = 0 for n 6= ±1, 0 (4.38)

and the vanishing of higher ωni directly implies that there are no extra fields present in

the action compared to the standard Poincaré case. Since we do not need to constrain ρn,

the action (4.29) is, assuming above conditions, invariant under general supertranslations.

This invariance is however trivial in the sense that under the condition ωxi = 0 the fields

which are present in the action are invariant themselves under supertranslations, as can

be seen from the transformations (4.18) and (4.19). There is one exception from this,

namely the change generated in e±1 by ρ±2 which reads δe±1
i = (2n ∓ 1)ω∓1ρ±2. In the

first choice above the action is also invariant under almost all superrotations, but again

this invariance is trivial since the fields in the action are themselves invariant under these

superrotations due to the conditions exi = ωxi = 0.

Our final result is that the gauge symmetry of the action (4.29) is the Poincaré group

and additionally supertranslations generated by ρ±2. This symmetry is present only in

the case that the action contains no higher gauge fields.

46



We note that instead of the invariant element (4.26) we could have chosen any of the

invariant elements corresponding to the embeddings in (2.42), (2.43). The discussion we

just presented would go through exactly the same, with ±1 appropriately replaced by ±n.

Choosing any of these different invariant forms does therefore not lead to a qualitatively

different result but amounts to a mere renaming of indices.

4.3.3 Construction of gauge invariant action with finite cosmological constant

Now we consider the case of a finite, negative cosmological constant Λ. The setup and

following discussion is very similar to the previous subsection but instead of B3 we take

as a starting point the following algebra, see [48, 49]

[lm, ln] = (m− n)lm+n,

[Tm, Tn] = Λ(m− n)lm+n,

[lm, Tn] = (m− n)Tm+n, (4.39)

which we will refer to as ΛB3 and which describes the asymptotic symmetry of space-

times which asymptotically approach three dimensional Anti-de Sitter spacetime, AdS3.

Similarly to the asymptotically flat case we obtain from (4.39) the symmetry algebra of

isometries of exactly AdS3 spacetime by constricting m,n to values 0,±1. We restrict

ourselves to a negative cosmological constant since in that case spacelike hypersurfaces

are open and there exists a non-trivial asymptotic symmetry at spatial infinity. This

asymptotic symmetry has to be included in the Hamiltonian of the theory in the form of

surface integrals, as was explained for the case Λ = 0 in chapter 3. For asymptotic de

Sitter spaces such hypersurfaces are compact and there is no asymptotic structure [50].

We proceed in analogy to the Λ = 0 case. Evaluating (4.17) with (4.39) yields the

following transformation laws for the gauge fields

δemi = −∂iρm + (2n−m)
(
em−ni τn + ωm−ni ρn

)
(4.40)

δωmi = −∂iτm + (2n−m)
(
ωm−ni τn + Λem−ni ρn

)
(4.41)

and from (4.20) it follows

Smij = ∂ie
m
j − ∂jemi + (m− 2n)

(
em−ni ωnj + ωm−ni enj

)
(4.42)

Rmij = ∂iω
m
j − ∂jωmi + (m− 2n)

(
ωm−ni ωnj + Λem−ni enj

)
. (4.43)

As in the previous subsection the algebra (4.39) has no invariant element and we choose

an invariant element of the AdS3 symmetry algebra to construct the Chern-Simons action.

The element (4.26) is invariant under (4.39) as well, but with the cosmological constant
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non-vanishing there is a second non-degenerate invariant form, namely

< t0, t0 >= Λ, < t1, t−1 >=< t−1, t1 >= −2Λ (4.44)

< l0, l0 >= 1, < l1, l−1 >=< l−1, l1 >= −2 (4.45)

and we are choosing now this one to construct the action. From (4.25) we obtain for the

action

I =

∫
d4xεijkl

[
Λ
(
S0
ijS

0
kl − 2(S1

ijS
−1
kl + S−1

ij S
1
kl)
)

+R0
ijR

0
kl − 2(R1

ijR
−1
kl +R−1

ij R
1
kl)
]
. (4.46)

As before, the integrand can be written as a total derivative and using the divergence

theorem we find the Chern-Simons action

I = 2

∫
d3xεijk

[
fmnω

m
i (∂jω

n
k − ∂kωnj )− 4(1− 2n)ω−1

i ω1−n
j ωnk

+ Λfmne
m
i (∂je

n
k − ∂kenj ) + 4Λ

(
− nω0

i e
−n
j enk

+ (1 + 2n)ω1
i e
−1−n
j enk − (1− 2n)ω−1

i e1−n
j enk

)]
. (4.47)

Under a transformation of the gauge fields the action transforms as

δI = 8

∫
d3xεijk

[
fmnδω

m
i ∂jω

n
k − (1− 2n)

(
2ω−1

i δω1−n
j ωnk + δω−1

i ω1−n
j ωnk

)
+ Λ

(
fmnδe

m
i ∂je

n
k − n

(
2ω0

i δe
−n
j enk + δω0

i e
−n
j enk

)
+ (1 + 2n)

(
2ω1

i δe
−1−n
j enk + δω1

i e
−1−n
j enk

)
− (1− 2n)

(
2ω−1

i δe1−n
j enk + δω−1

i e1−n
j enk

) )]
, (4.48)

up to boundary terms since integration by parts was used to combine terms explicitly

containing derivatives. First, we check that the action is indeed invariant under the AdS3

isometry transformations, i.e. we assume that eni , ω
n
i , ρ

n, τn and Rnij vanish for n 6= ±1, 0.

Plugging in the transformation laws (4.40) and (4.41) we find the following terms not

containing Λ nor partial derivatives

− (1− 2n)ωnk τ
lεijk

(
2(2l + n− 1)ω−1

i ω1−n−l
j + (2l + 1)ω−1−l

i ω1−n
j

)
= τ lεijk

(
−2(2l − 1)ω−1

i ω1−l
j ω0

k + 2(2l + 1)ω−1−l
i ω0

jω
1
k + 4lω−1

i ω−lj ω
−1
k

)
(4.49)

and terms not containing Λ but partial derivatives

εijk
[
τn
(
−2n∂jω

0
i ω
−n
k + 2(2n+ 1)∂jω

1
i ω
−1−n
k + 2(2n− 1)∂jω

−1
i ω1−n

k

)
+ (1− 2n)

(
−2∂j(ω

−1
i ωnk )τ1−n + ∂j(ω

1−n
i ωnk )τ−1

) ]
(4.50)
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and upon carrying out the sums all terms either cancel or vanish because they are of the

form εijkωni ω
n
j . Next, we consider terms proportional to Λ which do not contain partial

derivatives

Λεijk
[
− (1− 2n)ωnkρ

l
(

2(2l − 1 + n)ω−1
i e1−n−l

j + (2l + 1)e−1−l
i ω1−n

j

)
− nenk

(
2(2l + n)ω0

i

(
e−n−lj τ l + ω−n−lj ρl

)
+ 2lω−li τ

le−nj

)
+ (1 + 2n)enk

(
2(2l + 1 + n)ω1

i (e
−1−n−l
j τ l + ω−1−n−l

j ρl)

+ (2l − 1)ω1−l
i τ le−1−n

j

)
− (1− 2n)enk

(
2(2l − 1 + n)ω−1

i

(
e1−n−l
j τ l + ω1−n−l

j ρl
)

+ (2l + 1)ω−1−l
i τ le1−n

j

)]
(4.51)

and summing over n and collecting terms gives

Λεijk
(
ρl
[
2(2l + 1)e−1−l

i ω0
jω

1
k + 2(2l − 1)e1−l

i ω−1
j ω0

k − 4le−li ω
−1
j ω1

k

+ 2e0
i

(
(2l − 1)ω1−l

j ω−1
k − (2l + 1)ω−1−l

j ω1
k

)
+ 2e1

i

(
(2l + 1)ω−1−l

j ω0
k − 2lω−lj ω

−1
k

)
− 2e−1

i

(
(2l − 1)ω1−l

j ω0
k − 2lω−lj ω

1
k

) ]
+ τ l

[
2(2l − 1)ω1−l

i e−1
j e0

k + 2(2l + 1)ω−1−l
i e0

je
1
k + 4lω−li e

1
je
−1
k

+ 2ω0
i

(
(2l − 1)e1−l

j e−1
k − (2l + 1)e−1−l

j e1
k

)
+ 2ω1

i

(
(2l + 1)e−1−l

j e0
k − 2le−lj e

−1
k

)
− 2ω−1

i

(
(2l − 1)e1−l

j e0
k − 2le−lj e

1
k

) ])
(4.52)

and one can check that for each l all the terms cancel out. Next come terms which contain

both Λ and partial derivatives

Λεijk
[
fmn(2l −m)

(
em−li ρl∂jω

n
k + em−li τ l∂je

n
k + ωm−li ρl∂je

n
k

)
+ n

(
2ω0

i ∂jρ
−n + ∂iτ

0e−nj

)
enk

− (1 + 2n)
(

2ω1
i ∂jρ

−1−n + ∂iτ
1e−1−n
j

)
enk

+ (1− 2n)
(

2ω−1
i ∂jρ

1−n + ∂iτ
−1e1−n

j

)
enk
]

(4.53)

and performing integration by parts on the three last lines and summing over fmn yields
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up to boundary terms

Λεijk
(
ρl
[
2lω−li ∂je

0
k − 2(2l − 1)ω1−l

i ∂je
−1
k − 2(2l + 1)ω−1−l

i ∂je
1
k

+ 2lω0
i ∂je

−l
k − 2(2l + 1)ω1

i ∂je
−1−l
k + 2(1− 2l)ω−1

i ∂je
1−l
k

]
+ τ l

[
− 2le−lj ∂ie

0
k + 2(2l − 1)e1−l

j ∂ie
−1
k + 2(2l + 1)e−1−l

j ∂ie
1
k

]
− 2lτ0e−nj ∂ie

l
k + 2(2l + 1)τ1e−1−l

j ∂ie
l
k − (1− 2l)τ−1e1−n

j ∂ie
l
k

)
, (4.54)

where any terms proportional to ∂iω
m
j have already canceled out and again for each l the

remaining terms can be seen to cancel. Finally, there are terms proportional to Λ2

Λ2enkρ
lεijk

(
− 2nle−li e

−n
j + (1 + 2n)(2l − 1)e1−l

i e−1−n
j

− (1− 2n)(2l + 1)e−1−l
i e1−n

j

)
= Λ2ρlεijk

(
4lelie

1
je
−1
k + 2(2l − 1)e1−l

i e−1
j e0

k + 2(2l + 1)e−1−l
i e0

je
1
k

)
(4.55)

and the terms either cancel each other or they vanish since they are for the form εijkeni e
n
j e
m
k .

We have thus shown that the action (4.47) is indeed gauge invariant under the isometries

of AdS3 if all higher fields and transformations are assumed to vanish and we now proceed

with the general case.

If we allowed for all gauge fields and transformations to be non-vanishing many extra

terms in the variation would appear of the action which do not cancel out and as before

we will try to find the smallest set of gauge fields and transformation we have to assume

to vanish in order to restore gauge invariance. To let the extra terms vanish in (4.49)

we impose ωxi = 0, which still allows terms proportional to ω∓1
i ω∓1

j τ±2, but since they

are symmetric and vanishing we do not have to constrain τn. With the same reasoning

the constraint ωxi = 0 is also sufficient to make the extra terms in (4.50) vanish. From

the terms in (4.51) we find that we need to restrict exi = τ±2 = ρ±2 = 0, this leaves

terms proportional to ρ±3, τ±3 but they vanish again because they are symmetric. These

constraints are sufficient to also make all the extra terms in (4.53) and (4.55) vanish.

To summarize, in order to restore gauge invariance of the action (4.47) we need to

impose the following restrictions

eni = ωni = τ±2 = ρ±2 = 0, for n 6= ±1, 0. (4.56)

This means that there are no extra fields in the action and that the action is invariant

under ΛB3 gauge transformations, except for the cases τ±2 and ρ±2. However, from the

transformation laws of the gauge fields (4.40) and (4.41) we find that the invariance of the

action under these ΛB3 gauge transformations is trivial in the sense that the gauge fields

themselves are invariant under these transformations.
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5 κ-deformed BMS symmetry

5.1 Introduction

In this section we perform a so-called κ-deformation [7]–[11] of the BMS symmetry and

investigate the properties of the deformed algebra. The term deformation here refers to

a generalization of an algebra that reduces to the undeformed algebra in an appropriate

limit of the deformation parameter, in the case considered here this limit is κ→∞.

The main motivation to study κ-deformations is that it is thought [18] that the κ-

deformed Poincaré symmetry is related to quantum gravity, which remains elusive even

after decades of research. It is believed to be so since the deformation parameter κ has

the dimension of mass by construction and can therefore naturally be identified with

the quantum gravity energy scale, the Planck mass, MPl ∼ 1019 GeV. Another widely

held belief is that the structure of spacetime drastically changes at the Planck scale,

l ∼ 10−35 m, [51] and that the symmetries of such quantum spacetimes differ from the

classical Poincaré symmetries as well. One could expect that even in the limit of vanishing

spacetime curvature the structure of spacetime at this scale remains different from the

classical case and it is thought that κ-Poincaré describes the symmetry of such a “flat

quantum spacetime”. Such a link between a proposed theory of quantum gravity and

κ-Poincaré has been established in the case of three-dimensional gravity [20] but not in

the four-dimensional case.

One way of thinking about the BMS symmetry is that GR does not reduce to special

relativity at large distances and weak fields but instead there remains a large space of

inequivalent vacua, as has been explained in section 2.1. One could therefore argue that

the symmetries of the aforementioned flat quantum spacetime is in fact described by a

deformed BMS rather than a deformed Poincaré symmetry. This observation motivates

us to extent the κ-deformation of the Poincaré algebra to the infinite-dimensional BMS

algebra. But before performing the actual algebra deformation we are giving a short review

of the necessary mathematical notions such as Hopf algebra, Lie bialgebra and Drinfeld’s

twist deformation [52, 53].

5.2 Review of mathematical notions

It is in fact not the Poincaré or BMS algebra, which are Lie algebras, that are being

deformed directly but the associated Hopf algebras, which can be thought of as algebras

equipped with additional structures. We are first going to define what exactly a Hopf

algebra is and then we will show how a Hopf algebra can be obtained from a given Lie

algebra.

To define a Hopf algebra we follow the explanations in [54]. We begin with the definition

of an associative, unital algebra which is a vector space V over a field K, e.g. real or

complex numbers, together with a multiplication(or product) m : V ⊗ V → V and unit
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η : K → A such that

m ◦ (m⊗ id) = m ◦ (id⊗m) (5.1)

m ◦ (η ⊗ id) = id = m ◦ (id⊗ η). (5.2)

The product, as it is usually written, is given by ab := m(a ⊗ b) and the first line then

simply expresses associativity a(bc) = (ab)c. The unit is determined by its value η(1) ∈ V
and the second line can then be recognized as the definition of the unit a1 = 1a = a.

Next, we define a coalgebra which is a vector space V over a field K together with a

coproduct ∆ : V → V ⊗ V and counit ε such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ (5.3)

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆. (5.4)

By comparison with the previous definition we can see that the coproduct “dualizes” the

notion of the product: instead of mapping from two elements of V to one element it does

the reverse, it maps one element of V to two elements. Later in subsection 5.5 we show in

what context this construction is used which will also make its meaning more clear. For

now we are just interested in the mathematical structure.

Finally, a Hopf algebra is both an algebra and a coalgebra obeying certain compatibility

conditions, namely

∆(ab) = ∆(a)∆(b), ε(ab) = ε(a)ε(b), ∆(1) = 1⊗ 1, ε(1) = 1. (5.5)

Additionally it contains the antipode S : V → V which fulfills

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆, S(ab) = S(b)S(a) (5.6)

and, as will be made more clear in 5.5, can be understood as a generalization of the inverse.

With this definition of a Hopf algebra H at hand we now explain how one can obtain

one from a given Lie algebra g. The first step is to construct the universal enveloping

algebra U(g). This construction is necessary since H is defined to be a unital, associative

algebra. Intuitively one can think of U(g) as g being embedded into an unital, associative

algebra A such that the abstract bracket [x, y] in g is realized by the commutator xy− yx
in A. Formally, U(g) is defined as the quotient space U(g) = T (g)/J(g), where T (g) is

the tensor algebra of g, i.e. the the direct sum of all possible tensor products of vectors

in g, and J(g) = x⊗ y − y ⊗ x = [x, y].

As an example for an universal enveloping algebra we consider the Lie algebra sl(2,C)

which is spanned by three matrices

X =

 0 1

0 0

 Y =

 0 0

1 0

 H =

 1 0

0 −1


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which satisfy [H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = H. The universal enveloping

algebra is then spanned by all (non-negative) powers of three elements x, y, h, therefore

also contains the unit, and is associative. The only additional conditions the enveloping

algebra is subject to are

hx− xh = 2x, hy − yh = −2y, xy − yx = h

and notice that therefore it is not true that, for example, x2 = 0 even though from the

above matrix representation it follows that X2 = 0.

The enveloping algebra U(g) can then be equipped with a coproduct ∆0, counit ε0

and antipode S0 to form a so-called primitive Hopf algebra H. These structures take the

following form for all X ∈ g [54]

∆0(X) = X ⊗ 1 + 1⊗X, S0(X) = −X, ε0(X) = 0, ε0(1) = 1,

S0(1) = 1, ∆0(1) = 1⊗ 1. (5.7)

One can check that the undeformed structures (5.7) are indeed consistent with the

previous definition of Hopf algebra, for instance one finds

m ◦ (S ⊗ id)(1⊗X +X ⊗ 1) = 0 = ε(X)1. (5.8)

Such standard Hopf algebra structure will be then deformed by using Drinfeld’s twist

deformation techniques. To this end one has to extend U(g) by introducing a new com-

muting generator denoted as 1/κ. A new, deformed, Hopf algebra equipped with a twist-

deformed coproduct ∆ and a compatible antipode S becomes, according to Drinfeld’s

terminology, a ‘quantum group’. The coproduct in our case will be obtained by a similar-

ity transformation

∆(X) = F∆0(X)F−1 (5.9)

with a twist F ≡ ai ⊗ bi ∈ H ⊗ H that has to satisfy the 2-cocycle and normalization

conditions

F12(∆0 ⊗ id)(F) = F23(id⊗∆0)(F), ε(ai)bi = 1, (5.10)

where F12 = ai ⊗ bi ⊗ 1 etc. and repeated indices indicate a summation. The deformed

antipode is given by

S = vS0v
−1, (5.11)

where v = m ◦ (id⊗S)(F) and v−1 is its inverse. The twist deformation only modifies the

coproduct and antipode but leaves the algebra g unchanged. This is in contrast to the

time-like κ-Poincaré, see e.g. [11], where the algebra sector is deformed as well.
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The 2-cocycle condition guarantees that the deformed coproduct remains coassociative

which can be seen as follows:

(∆⊗ id) ◦∆(X) = (F∆0F−1 ⊗ id)(F∆0(X)F−1)

= (F ⊗ id)(∆0 ⊗ id)(F∆0(X)F−1)(F−1 ⊗ id)

= [F12(∆0 ⊗ id)(F)][(∆0 ⊗ id)∆0(X)][(∆0 ⊗ id)(F−1)F−1
12 ]

= [F23(id⊗∆0)(F)][(1⊗∆0)(∆0(X))][(id⊗∆0)(F−1)F−1
23 ]

= F23(id⊗∆0)(F)(F∆0F−1)F−1
23

= (id⊗∆) ◦∆(X), (5.12)

where in the second line we used that (a⊗b)(a′⊗b′) = aa′⊗bb′, in the third line that ∆0 is

a homomorphism and in the fourth line we used in the first and last bracket the 2-cocycle

condition and in the middle bracket coassociativity of ∆0. Notice that in the fourth line

in the last bracket we actually used the inversed form of the 2-cocycle condition:

F12(∆0 ⊗ id)(F) = F23(id⊗∆0) (5.13)

⇒ (∆0 ⊗ id)(F−1)F−1
12 = (id⊗∆0)(F−1)F−1

23 . (5.14)

For every Hopf algebra which is obtained as a quantum deformation of a Lie algebra (so-

called quantized universal enveloping algebra) one introduces a formal variable enabling

one to expand the deformed coproduct and antipode. In our case this is the dimension

full parameter 1/κ. It turns out that for each coproduct the first order contribution of

the anti-symmetrized coproduct defines the so-called “classical limit”. Applied to the Lie

algebra generators X ∈ g

δ(X) = lim
κ→∞

κ(∆(X)−∆21(X)) (5.15)

this defines on the initial Lie algebra g the cobracket δ providing the structure of a Lie

bialgebra, where ∆21 denotes the coproduct with flipped legs, i.e. if ∆(X) = X1a ⊗X2a

then ∆21(X) = X2a⊗X1a. As will be explained in more detail below δ is compatible with

the bracket in g and satisfies a dual Jacobi identity. Also notice that in the undeformed

case δ is vanishing since ∆0 is symmetric. Let us briefly discuss some properties of such

Lie bialgebras following the treatment in [55, 56].

First we need to define a Lie coalgebra which is a vector space equipped with a co-

bracket δ : g → g ⊗ g that is anti-symmetric and fulfills the dual Jacobi identity, for all

X ∈ g (
id + σ + σ2

)
(δ ⊗ id )δ(X) = 0, (5.16)

where σ denotes a cyclic permutation of g⊗ g⊗ g. A Lie bialgebra is then defined as a set
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of a Lie algebra and Lie coalgebra that are compatible in the following sense

δ([X,Y ]) = adXδ(Y )− adY δ(X)

= (adX ⊗ id + id⊗ adX)δ(Y )− (adY ⊗ id + id⊗ adY )δ(X). (5.17)

If the cobracket is implemented by an antisymmetric element r ∈ g ∧ g, the so-called

classical r-matrix, satisfying the classical Yang-Baxter equation (see below) the Lie bial-

gebra is called coboundary. In that case we obtain a cobracket applied to an arbitrary

element X of the initial Lie algebra in the form

δr(X) = adXr ≡ [X ⊗ id + id⊗X, r]. (5.18)

This form of the cobracket automatically satisfies the following compatibility condition

(5.17). To check that this is true we first note that we can write

δr(X) = (adX ⊗ id + id⊗ adX)(r) (5.19)

and substituting in (5.17) we have

δr([X,Y ]) = (adX ⊗ id + id⊗ adX)(adY ⊗ id + id⊗ adY )(r)

− (adY ⊗ id + id⊗ adY )(adX ⊗ id + id⊗ adX)(r)

=
(
(adXadY − adY adX)⊗ id + id⊗ (adXadY − adY adX)

)
(r)

= (ad[X,Y ] ⊗ id + id⊗ ad[X,Y ])(r) = ad[X,Y ](r), (5.20)

which shows that indeed (5.17) follows from (5.18). In the last line we used that for Z ∈ g

adXadY Z − adY adXZ = ad[X,Y ]Z (5.21)

which we can also write as

[X, [Y,Z]]− [Y, [X,Z]] = [[X,Y ], Z] (5.22)

and this is equivalent to the Jacoby identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (5.23)

For coboundary deformations the flipped coproduct is provided by the quantum r-

matrix R: ∆21 = R∆R−1. In this way the formula (5.15) expresses on the one hand the

so-called classical limit of quantum deformations and on the other hand relations between

classical and quantum r-matrices. Furthermore, the quantum r-matrix is related to the

twist via R = F21F−1 and thus (5.15) also expresses a relation between the twist and the

classical r-matrix.
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As stated above the r-matrix has to fulfill the classical Yang-Baxter equation

[[r, r]] = Ω, (5.24)

where [[, ]] denotes the Schouten bracket defined as

[[r, r]] = [r12, r13] + [r12, r23] + [r13, r23], (5.25)

and Ω is an adjoint invariant element, i.e. adXΩ = 0.

Note that sometimes (5.24) is referred to as modified Yang-Baxter equation and only

the case Ω = 0 is called classical. If the rhs of (5.24) is zero the corresponding bialgebra

structure is called coboundary triangular. All such deformations are derivable by a twisting

procedure (like eq.(5.9)) as described in [36, 57] and references therein.

The classical r-matrix is required to fulfill (5.24) because this condition guarantees

that δ satisfies the dual Jacobi identity (5.16) which follows from the following identity

(id + σ + σ2)(δ ⊗ id)δ(X) = adX [[r, r]], (5.26)

where σ denotes a cyclic permutation of the element g⊗g⊗g. The proof of this identity is

quite lengthy and can be found in [56] and therefore, instead of presenting this proof, we

demonstrate that it holds true for a simple example. To this end we consider the algebra

with just two elements [x, y] = x and r-matrix given by r = x ∧ y so that from (5.18) we

obtain

δ(x) = 0, δ(y) = −x ∧ y. (5.27)

Evaluating each term in the Schouten bracket we find

[r12, r13] = −[y, x]⊗ x⊗ y − [x, y]⊗ y ⊗ x = x⊗ x⊗ y − x⊗ y ⊗ x

[r12, r13] = −x⊗ x⊗ y + y ⊗ x⊗ x

[r13, r23] = x⊗ y ⊗ x− y ⊗ x⊗ x (5.28)

and since the sum of these terms vanishes the Lie bialgebra in this example is triangular.

Now we evaluate the lhs of (5.26)

(δ ⊗ id)δ(x) = 0

(δ ⊗ id)δ(y) = −δ(x)⊗ y + δ(y)⊗ x = y ⊗ x⊗ x− x⊗ y ⊗ x

σ(δ ⊗ id)δ(y) = x⊗ y ⊗ x− x⊗ x⊗ y

σ2(δ ⊗ id)δ(y) = x⊗ x⊗ y − y ⊗ x⊗ x (5.29)

and see that it is indeed vanishing as well. This example completes our review of the

mathematical background and we can now proceed with the deformation of the BMS
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algebra.

5.3 κ-deformed three-dimensional BMS algebra

In this subsection we present the twist deformation of the three-dimensional BMS algebra

B3 defined in (2.37). It partially reproduces our publications [14, 58]. The physically

important example of Hopf algebra that we will use as a starting point here is the κ-

Poincaré Hopf algebra [7]-[11], which exists in three different versions characterized by

the fixed vector τ . This vector is spacelike, timelike or lightlike and defines the classical

r-matrix [59]

rτ = ταMαµ ∧ Pµ (5.30)

where Mαµ, P
µ form a basis of the Poincaré algebra[

Mµv,Mρλ

]
= i
(
ηµλMvρ − ηvλMµρ + ηvρMµλ − ηµρMvλ

)[
Mµν , Pρ

]
= i
(
ηvρPµ − ηµρPv

)
,
[
Pµ, Pλ

]
= 0

(5.31)

and ηµν is the Minkowski metric. The Schouten bracket of (5.30) turns out to be

[
[rτ , rτ ]

]
= −η(τ, τ)Ω, (5.32)

where Ω = Mµν ∧ Pµ ∧ P ν and therefore, out of these three different κ-Poincaré versions,

only the lightlike one is coboundary triangular and can thus be constructed by a twist.

The deformation of the Poincaré algebra via twist can then be extended to the whole B3

since from (2.37) we know the commutator of the elements of the Poincaré subalgebra and

elements of B3 and, as will be explained in more detail below, this is sufficient to perform

the twist deformation of B3. Since for the timelike and spacelike cases it is far less obvious

how such an extension of the deformation to B3 could be performed we choose the lightlike

case.

The lightlike (also called lightcone) κ-Poincaré deformation has the further advantage

that it automatically guarantees that the embeddings of the Poincaré sub-Hopf algebras

are consistent in the sense that the new coproduct is a homomorphism for all X,X ′ ∈ UB3

since

∆(XX ′) = F∆0(XX ′)F−1 = F∆0(X)F−1F∆0(X ′)F−1 = ∆(X)∆(X ′). (5.33)

In fact, one can even make a stronger argument that only the coboundary triangular Hopf

algebra is possible in UB3. In the Poincaré algebra there is only one nontrivial candidate

for the ad-invariant element in eq.(5.24)

Ω = Mµν ∧ Pµ ∧ P ν (5.34)

but this is not ad-invariant in the B3. Thus the Schouten bracket has to vanish which is
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the defining relation for a triangular Hopf algebra. Therefore the lightlike deformation is

actually the only one that can be constructed for B3.

To explicitly construct the lightcone κ-deformation one can first canonically assign a

Hopf algebra structure to UB3 by using the undeformed coproduct and antipode defined

in eq.(5.7) for every generator X. This trivial coalgebra structure can then be deformed

by using a 2-cocycle twist. In lightcone coordinates the Minkowski metric reads ds2 =

2dx+dx− − dx2
1 and we choose a null vector τ = (1, 0, 0) such that the r-matrix (5.30) is

given by

rε = M+− ∧ P− + εM+1 ∧ P 1 (5.35)

and the twist, which is called extended Jordanian twist, has the following form [59, 60]

Fε = exp

(
−εη11 i

κ
M+1 ⊗ P1

)
exp

(
−iM+− ⊗ η+− log

(
1 +

P+

κ

))
, (5.36)

where ε = 0, 1. We introduced the factor ε which can be either 1 corresponding to the full

deformation or 0 which leaves only the Jordanian part [60] of the twist.

Since there are in fact infinitely many embeddings of the Poincaré algebra into B3, see

eqs.(2.42)-(2.43), we obtain a whole family of twists parametrized by n. These different

embeddings of the Poincaré algebra into B3 10 allow for twists that turn out to lead to non-

isomorphic Hopf algebras living in the same universal enveloping algebra structure. This

means that there is a family of unitary twisting elements Fn,ε satisfying the two-cocycle

and normalization conditions which read

Fn,ε = exp

(
−εη11 i

κ
M+1 ⊗ P1

)
exp

(
−iM+− ⊗ η+− log

(
1 +

P+

κ

))

= exp

(
ε

i

nκ
√

2
ln ⊗ T0

)
exp

(
−l0 ⊗ 1/n log

(
1 +

i

κ
√

2
Tn

))
. (5.37)

To calculate the deformed coproducts (5.9)

∆n,ε(lm) = Fn,ε∆0(lm)F−1
n,ε , ∆n,ε(Tm) = Fn,ε∆0(Tm)F−1

n,ε (5.38)

we first write Fn,ε = eCeD and use that F−1
n,ε = e−De−C . We thus need to evaluate terms

of the form

∆ = eCeD∆0e
−De−C (5.39)

10In four dimensions similar embeddings exist and we start with the three dimensional case mainly for
simplicity.
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and to this end it is convenient to make use of the the Hadamard formula

eABe−A =

∞∑
n=0

1

n!
[A, [A, ...[A,︸ ︷︷ ︸

n times

B]...].

This formula is used twice, first we evaluate ∆′ = eD∆0e
−D and then in a second step

∆ = eC∆′e−C and in this way obtain the following deformed coproducts

∆n,ε(lm) =1⊗ lm − i
(m− n)

n
√

2κ
l0 ⊗ Tm+nΠ−1

+n + iε
m

n
√

2κ
ln ⊗ Tm

+ ε
(m− n)

n2κ2
ln ⊗ T0Tm+nΠ−1

+n + lm ⊗Π
m
n
+n

+ ε

∞∑
k=1

(
i

n
√

2κ

)k 1

k!
fknmlm+kn ⊗ T k0 Π

m
n
+n, (5.40)

∆n,ε(Tm) =1⊗ Tm + Tm ⊗Π
m
n
+n

+ ε

∞∑
k=1

(
i

n
√

2κ

)k 1

k!
fknmTm+kn ⊗ T k0 Π

m
n
+n, (5.41)

where

fknm =
k−1∏
j=0

(n− (m+ jn)), Π+n =

(
1 + i

Tn√
2κ

)
. (5.42)

Each coproduct labeled by n = 1, 2, . . . represents a different Hopf algebra deformation of

the enveloping algebra, i.e. a quantum group. Moreover, depending on the value of ε = 0 or

ε = 1 one has two quantum group structures for each n: Jordanian or extended Jordanian.

Furthermore, each of these quantum groups admits only one Hopf subalgebra, which is

for any n spanned by the elements l0, l±n, T0, T±n (to see that they are Hopf subalgebras

notice that for m = n ⇒ fknm = 0) and is isomorphic to the (lightlike) κ-Poincaré Hopf

algebra, i.e. the case n = 1.

The deformed antipode could be obtained from (5.11) but it appears that the resulting

expressions can not be written in closed form. We therefore only present the leading order

which is most easily obtained from the defining property of the antipode in (5.6) (first

equation therein). Considering first Tm and evaluating the right-hand side of (5.6) then

yields

m ◦ (id⊗ Sn,ε) ◦∆n,ε(Tm) = 0

⇒Sn,ε(Tm) + Tm

(
1 + i

mSn,ε(Tn)

n
√

2κ

)
+

iε

n
√

2κ
(n−m)Tm+nSn,ε(T0) +O(κ−2) = 0

⇒Sn,ε(Tm) = −Tm
(

1− i mTn
n
√

2κ

)
+

iε

n
√

2κ
(n−m)Tm+nT0 +O(κ−2). (5.43)
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Similarly we obtain the deformed antipode S(lm)

Sn,ε(lm) = −lm −
i√
2nκ

[
(m− n)l0Tm+n

−m(lmTn + εlnTm)− ε(n−m)lm+nT0

]
. (5.44)

Note that if one tried to obtain the deformed antipode in all orders in this way one would

in general obtain implicit equations for the antipode.

Each quantum group has as a classical limit the corresponding Lie bialgebra structure.

In our case the bialgebra cobrackets are obtained via (5.18) from classical r-matrices of

the form

rn,ε = η−+M+− ∧ P+ + ε η11M+1 ∧ P1 =
1√
2n

(l0 ∧ Tn + ε ln ∧ T0) (5.45)

and explicitly read

δn,ε(lm) =
i√
2n

(
(n−m)l0 ∧ Tm+n − εmln ∧ Tm

− ε(m− n))lm+n ∧ T0 +mlm ∧ Tn
)
, (5.46)

δn,ε(Tm) =
i√
2n

(ε(n−m)Tm+n ∧ T0 +mTm ∧ Tn) . (5.47)

One can check that this indeed corresponds to the anti-symmetrized O(κ−1) terms of the

coproducts as it should according to (5.15).

5.4 κ-deformed four-dimensional BMS algebra

The deformation of the four-dimensional BMS algebra can be performed completely anal-

ogously to the three-dimensional case. The results of this subsection have been published

in [14, 58]. Starting point is the Lie algebra B4
ext, i.e. the algebra in eq. (2.20) with

l,m, n ∈ Z, and for convenience we introduce a new basis via the linear combinations

km = lm + l̄m, k̄m = −i
(
lm − l̄m

)
,

Smp =
1

2

(
Tmp + Tpm

)
, Amp = − i

2

(
Tmp − Tpm

)
(5.48)
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in terms of which the algebra B4
ext takes the form

[kn, km] = (n−m)kn+m,
[
k̄n, k̄m

]
= −(n−m)kn+m,[

kn, k̄m
]

= (n−m)k̄n+m,[
kn, Spq

]
=

(
n+ 1

2
− p
)
Sp+n,q +

(
n+ 1

2
− q
)
Sq+n,p,[

k̄n, Spq
]

=

(
n+ 1

2
− p
)
Ap+n,q +

(
n+ 1

2
− q
)
Aq+n,p,[

kn, Apq
]

=

(
n+ 1

2
− p
)
Ap+n,q +

(
n+ 1

2
− q
)
Ap,q+n,[

k̄n, Apq
]

=

(
n+ 1

2
− p
)
Sp+n,q +

(
n+ 1

2
− q
)
Sq+n,p.

(5.49)

The elements which span the Poincare subalgebra in lightcone coordinates, with a, b = 1, 2

[M+a,M−b] = −i (Mab + ηabM+−) , [M±a,M±b] = 0

[M±a,Mbc] = i (ηabM±c − ηacM±b) , [M+−,M±a] = ±iM±a
[M+−, P±] = ±iP± , [M±a, Pb] = iηabP±

[M±a, P±] = [M+−, Pa] = 0 , [M±a, P∓] = −iPa

(5.50)

are now given by

k0 = iM+−, k̄0 = −iM12, k1 = −i
√

2M+1,

k−1 = i
√

2M−1, k̄1 = i
√

2M+2, k̄−1 = i
√

2M−2,

S00 = −i
√

2P−, S11 = −i
√

2P+, S01 = iP1, A01 = −iP2. (5.51)

As before the structure we are going to deform is the Hopf algebra obtained by equipping

the universal enveloping algebra UB4
ext with an undeformed coproduct and antipode. Since

in the four-dimensional case there are also infinitely many embeddings of the Poincaré

algebra into B4
ext, as discussed after eq. (2.26), there exists a family of twisting elements,

with n ∈ Z

Fn,ε = exp

(
−ε i

κ
M+a ⊗ Pa

)
exp

(
−iM+− ⊗ log

(
1 +

P+

κ

))

= exp

(
− iε√

2κ(1− 2n)

(
k1−2n ⊗ Sn,1−n + k̄1−2n ⊗An,1−n

))

× exp

(
k0

1− 2n
⊗ log

(
1 +

i√
2κ
S1−n,1−n

))
, (5.52)

where the first line is the lightlike κ-Poincaré twisting element given in [59]. The second

line has been obtained by first expressing M,P in terms of k, k̄, S,A according to (5.51)
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and then substituting the embeddings as follows

{l0, l±1, l̄0, l̄±1T00, T11, T10, T01}

⇒{
l0, l±(1−2n), l̄0, l̄±(1−2n), Tn,n, T1−n,1−n, T1−n,n, Tn,1−n

}
. (5.53)

From the twist (5.52) we obtain the following deformed coproducts

∆n,ε(km) = 1⊗ km + km ⊗ 1

− i

(1− 2n)
√

2κ

(
(m+ 2n− 1)k0 ⊗ S1−n+m,1−n +mkm ⊗ S1−n,1−n

)
+

iε

2(1− 2n)
√

2κ

(
k1−2n ⊗ [(m− 2n+ 1)Sn+m,1−n(m+ 2n− 1)S1−n+m,n]

+ k̄1−2n ⊗ [(m− 2n+ 1)An+m,1−n + (m+ 2n− 1)An,1−n+m]

− 2(1− 2n−m)[k1−2n+m ⊗ Sn,1−n + k̄1−2n+m ⊗An,1−n]
)

+O(κ−2)

(5.54)

∆n,ε(k̄m) = 1⊗ k̄m + k̄m ⊗ 1

− i

(1− 2n)
√

2κ

(
(m+ 2n− 1)k0 ⊗A1−n+m,1−n +mkm ⊗A1−n,1−n

)
+

iε

2(1− 2n)
√

2κ

(
k1−2n ⊗ [(m− 2n+ 1)An+m,1−n

+ (m+ 2n− 1)A1−n+m,n]

+ k̄1−2n ⊗ [(m− 2n+ 1)Sn+m,1−n + (m+ 2n− 1)Sn,1−n+m]

− 2(1− 2n−m)[k̄1−2n+m ⊗ Sn,1−n − k1−2n+m ⊗An,1−n]
)

+O(κ−2)

(5.55)

∆n,ε(Spq) = 1⊗ Spq + Spq ⊗ 1

− i

(1− 2n)
√

2κ
(p+ q)Spq ⊗ S1−n,1−n

+
iε

(1− 2n)
√

2κ

(
[(1− n− p)Sp+1−2n,q + (1− n− q)Sq+1−2n,p]⊗ Sn,1−n

+ [(1− n− p)Ap+1−2n,q

+ (1− n− q)Aq+1−2n,p]⊗An,1−n
)

+O(κ−2) (5.56)
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∆n,ε(Apq) = 1⊗Apq +Apq ⊗ 1

− i

(1− 2n)
√

2κ
(p+ q)Apq ⊗ S1−n,1−n

+
iε

(1− 2n)
√

2κ

(
[(1− n− p)Ap+1−2n,q + (1− n− q)Ap,q+1−2n]⊗ Sn,1−n

+ [(1− n− p)Sp+1−2n,q

+ (1− n− q)Sq+1−2n,p]⊗An,1−n
)

+O(κ−2). (5.57)

For each n there exists only a single Hopf subalgebra spanned by the set of ten generators

k0, k1−2n, k̄0, k̄1−2n, Sn,n, S1−n,1−n, Sn,1−n, S1−n,n, An,1−n, A1−n,n. These subalgebras are

isomorphic to the Poincaré subalgebra, i.e. the case n = 0. To see that these generators

indeed form subalgebras consider for instance ∆(km) and for m = 0 it is directly clear that

it only contains elements from the aforementioned set of ten generators. For m = 1− 2n

the only remaining contribution comes from terms proportional to Sn+m,1−n = S1−n,1−n

and is thus also in the set and similarly one can check the remaining coproducts.

The Lie bialgebra cobracket can be obtained simply by anti-symmetrizing the leading

order expressions for the coproducts (5.54)-(5.57) and we therefore do not write them here

explicitly. The expressions for the deformed antipode can be found in the Appendix (8.1).

5.5 Physical interpretation of coproduct and antipode

So far our treatment of the deformation of the BMS algebra in three and four dimensions

has been mainly mathematical and we can now turn to explaining how the coproduct and

antipode can be interpreted physically.

The role of the coproduct is to define how an operator, e.g. the momentum operator,

acts on a two-particle state to obtain the total momentum, see for example [18]. In the

undeformed case this just yields the familiar composition rule of momenta

Ptot |P 1〉 ⊗ |P 2〉 = ∆(P ) |P 1〉 ⊗ |P 2〉

= (1⊗ P + P ⊗ 1) |P 1〉 ⊗ |P 2〉

= (P 1 + P 2) |P 1〉 ⊗ |P 2〉 (5.58)

but if we, for example, consider the deformed coproduct (5.41) this composition rule is

modified

∆n,0(Tm) |T 1〉 ⊗ |T 2〉 = (T 1
m + T 2

m +
im

n
√

2κ
T 1
mT

2
n) |T 1〉 ⊗ |T 2〉 (5.59)

and it is common to use the notation

T 1
m ⊕ T 2

m = T 1
m + T 2

m +
im

n
√

2κ
T 1
mT

2
n . (5.60)

We can therefore understand the coproduct as the structure that defines a deformed sum-

63



mation rule and the antipode can be understood as the compatible deformed subtraction

and will be denoted as 	. Using the expression for the antipode (5.43), with ε = 0, we

can write in leading order

Tm ⊕ (	Tm) = Tm ⊕ (−Tm +
im

n
√

2κ
TmTn) = 0,

(5.61)

which demonstrates aforementioned compatibility.

An interesting feature of the deformed coproducts in four dimensions (5.54)-(5.57) is

that it leads to a modified composition rule such that the addition of two supermomenta,

i.e. momenta outside of the Poincaré sector, in general will contain Poincaré momenta.11

The deformed coproduct ∆1,0(Apq) in eq. (5.57), for instance, contains the Poincaré

momenta S0,0, S0,1 and A0,1. The same is true for the addition of two superrotations

which will generically contain an element k0 or k̄0 from the Poincaré sector. This fact is

going to play an important role in section 6.3, where we explain how it could enter an

ongoing discussion concerning the black hole information paradox [22].

11This is also true for the three-dimensional case, but we are interested here in the physical, four-
dimensional case.
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6 Black hole entropy and information loss paradox

6.1 Introduction

The discovery that black holes carry an entropy proportional to their horizon area A

according to the celebrated Bekenstein-Hawking formula

S =
A

4~G
, (6.1)

is now more than forty years old [21, 61]. The physical picture is that due to quantum

effects a black hole of mass M evaporates [21] and it does so in such a way that the

radiation it emits has an exact thermal spectrum at the Hawking temperature

TH =
~

8πGM
. (6.2)

Despite numerous derivations of the entropy-area relation (6.1) existing in a variety of

approaches to quantum gravity (see [62] for a comprehensive listing), the fundamental

question concerning the nature of the degrees of freedom responsible for such entropy has

not yet found a conclusive answer.

In subsection 6.2 we revisit [65] one of the earliest attempts at addressing this ques-

tion by ’t Hooft [12], in which quanta of a field in thermal equilibrium at the Hawking

temperature near the horizon are considered as possible candidates for the origin of the

Bekenstein-Hawking entropy. The main novelty of our treatment is the inclusion of back-

reaction effects on the spacetime metric due to the evaporation of the black hole which

allows us to give a natural explanation for a certain regulator, the so-called brick wall, ’t

Hooft had to introduce ad hoc. The brick wall is situated just above the event horizon

and it is assumed that all fields below it are vanishing in order to cure divergences that

would appear otherwise.

After completing our discussion of black hole entropy we turn in subsection 6.3 to

another far reaching consequence of the existence of black hole evaporation, namely the

information loss paradox [22]. We will briefly introduce what the paradox is about and

explain a possible loophole in the derivation of [22] which has recently been proposed by

Hawking, Perry and Strominger [13]. It is intimately connected with the BMS symmetry

and is of semi-classical nature, i.e. spacetime is considered to be classical and matter

fields quantum. Not long after, Bousso, Mirbabayi and Porrati [63, 64] have put forward

a counter argument which they use to claim that the BMS symmetry has in fact no

bearing on the information paradox whatsoever. In yet another twist to that story we

argue that the κ-deformation of the BMS symmetry potentially invalidates one of the

core assumptions of [64], so that their argument would no longer be an obstruction to

the arguments of [13]. This line of argument would suggest that a semi-classical approach

is not sufficient to resolve the information loss paradox but quantum gravity effects are

necessary.
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6.2 Brick wall entropy

Since due to quantum effects black holes radiate thermally [21], one of the earliest attempts,

by ’t Hooft [12], at explaining the microscopical degrees of freedom underlying black

hole entropy focused on the quanta of a field in thermal equilibrium at the Hawking

temperature near the horizon. As it turns out the counting of modes needed for deriving

the thermodynamic partition function of the field yields a divergent result due to an infinite

contribution coming from the black hole horizon. ’t Hooft noticed that introducing a crude

regulator by requiring the vanishing of the field at a small radial distance from the horizon

allows to obtain a finite horizon contribution to the entropy proportional to the area.

Appropriately tuning the distance of such a “brick wall” from the horizon one can exactly

reproduce the Bekenstein-Hawking formula (6.1). This result, albeit suggestive, replaces

the question about the origin of Bekenstein-Hawking entropy with a question about the

nature of the brick wall boundary.

In this section, which partially reproduces our publication [65], we study the effect of

backreaction on the field propagating in the vicinity of the black hole horizon. We do

this by replacing the usual Schwarzschild metric by a dynamic, “evaporating” metric first

proposed in [66], in which the effects of backreaction are parametrized by the luminosity of

the radiating black hole. After solving the field equations in such a metric we proceed to the

usual mode counting for the field. The key feature of our model is that the small luminosity

creates a “quantum ergosphere”, a region between the apparent horizon and the event

horizon which effectively acts as a brick wall providing a finite horizon contribution to the

entropy. As we show below, within the small luminosity and quasi-static approximations

we use we are able to reproduce the Bekenstein-Hawking result within very good accuracy.

Our starting point is the result by Bardeen [66] (see also [67] and [68]) that the metric

of a spherically symmetric black hole slowly emitting Hawking radiation has the following

form

ds2 = −e2ψ

(
1− 2m

r

)
dv2 + 2eψdvdr + r2dΩ, (6.3)

where ψ and m are functions of the advanced time v and the radial coordinate r. Einstein

field equations relate ψ and m to the energy-momentum tensor Tµν by

∂m

∂r
= 4πr2T vv (6.4)

∂m

∂v
= 4πr2T rv (6.5)

∂ψ

∂r
= 4πreψT vr (6.6)

and as is explained in [67] we also assume that near the horizon the components of Tvv, Trv

are of order L/r2. For m constant and ψ = 0 this metric reduces to the Schwarzschild one,

while for ψ = 0 and m = m(v) it becomes the Vaidya metric. Following [67] we define the

mass of the black hole at a given time to be M(v) = m(v, r = 2m) and its luminosity to
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be L = −dM
dv .

We work in the regime of small luminosity12 L� 1 and in what follows we will focus

on the near-horizon features of the metric (6.3). To this end we introduce a new “co-

moving” radial coordinate ρ = r − 2M = r − 2M0 + 2Lv and assume that ρ is small, of

the same order as Lv, so that in our computations we will only keep terms which are at

most linear in ρ and L. Further, the Einstein equations allow us to set, for convenience,

ψ(r = 2M) = 0, which in our approximation makes the function ψ disappear from all the

linearized expressions. Indeed

ψ(r) ' ψ(r = 2M) +
∂ψ

∂r

∣∣∣∣
r=2M

ρ (6.7)

and it follows from Einstein equations that ∂ψ/∂r ∼ L/r at r = 2M , so that the first

term in (6.7) vanishes, while the second is of higher order and can be neglected. A similar

argument can be applied to m

m(v, r) ' m(v, r = 2M) +
∂m

∂r

∣∣∣∣
r=2M

ρ (6.8)

and since ∂m/∂r ∼ L we can write to first order in perturbation theory

m(v, r) 'M(v) 'M0 − Lv . (6.9)

In terms of the co-moving radial coordinate the metric near r = 2M takes the form

ds2 =−
(

ρ

ρ+ 2M
+ 4L

)
dv2 + 2dvdρ+ (ρ+ 2M)2dΩ. (6.10)

The metric (6.3) has several horizon-like structures. We first consider the apparent

horizon (AH), defined as the outermost trapped surface, i.e. the surface from which no light

ray can move outwards. One characterizes this feature with the help of the expansion Θ of

a congruence of null geodesics, which describes the fractional change of the congruence’s

area. The apparent horizon is defined as a surface for which Θ = 0.

The expansion Θ of a congruence of null geodesics is given by [67]

Θ = lµ;µ − κ , (6.11)

where lµ is the tangent vector field to the congruence, κ = −βµlν lµ;ν and βµ is an auxiliary

null vector which fulfills lµβ
µ = −1. This auxiliary vector appears since in the case of a

null curve it is at first not clear how to define a subspace normal to the tangent vector

of this curve, because a null vector is normal to itself. Such a subspace is crucial for the

description of geodesic congruences, however, and for null geodesics it is defined to consist

12Since L ∝ 1/M2, for a black hole with solar mass the value would be L ∼ 10−76 in Planck units.
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of all those vectors which are orthogonal to both lµ and βµ. Choosing the null vectors

lµ = (lv, lr) =

(
1,

1

2

(
1− 2M

r

))
, βµ = (0,−1), (6.12)

we obtain the following expressions for the expansion in Bardeen coordinates (r, v) and

co-moving coordinates (ρ, v)

Θ(r) =
M

r2
− 1

4M
, Θ(ρ) =

M

(ρ+ 2M)2
− 1

4M
, (6.13)

which shows that the apparent horizon is located in the two coordinate systems at rAH =

2M and at ρAH = 0.

In order to capture another horizon-like structure present in the problem, York [67]

gives a working definition of what we will call York event horizon (YEH), which lacks the

teleological property of the event horizon and is instead based on the local condition

d2r

dv2
= 0, (6.14)

i.e. it characterizes the YEH as the surface at which photons are “stuck”. According to this

definition the YEH in the Bardeen and co-moving coordinates lies at rY EH = 2M − 8ML

and ρY EH = −8ML.

The region between York event horizon and apparent horizon was dubbed by York

quantum ergosphere [67], and he argues that its presence is an irreducible property of an

evaporating black hole.

We will use this observation to shed new light on the brick wall calculation of ’t Hooft

[12] by including the contributions due to the backreaction, here modeled by a small

luminosity L.

The original result of ’t Hooft is that the free energy of a scalar field living outside the

Schwarzschild black hole has a horizon contribution given by

F = −2π3

45h

(
2M

β

)4

+ . . . (6.15)

where β is the inverse Bekenstein-Hawking temperature and h is a small cut-off parameter

with dimensions of length. From (6.15), using standard manipulations, one can calculate

the thermodynamic entropy associated to the field and the resulting contribution from the

horizon term above is proportional to the area of the black hole thus qualitatively repro-

ducing the Bekenstein-Hawking entropy-area relation. As we will see, it is a consequence

of finite luminosity that the brick-wall thickness h, which is arbitrary in the original ’t

Hooft calculation, can be now naturally identified with the distance between the event

and apparent horizon. Therefore the quantum ergosphere [67], the region between the AH

and the YEH, plays the role of a physically motivated brick wall.
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In order to proceed with the counting of modes of the field we start by solving the

equations of motion describing a scalar field in the vicinity of the black hole horizon in

the co-moving coordinates introduced earlier. A massless scalar field φ in this geometry

with metric (6.10) obeys the following equation of motion(
4L+

ρ

ρ+ 2M

)
∂2
ρφ+ 2

∂ρφ

ρ+ 2M

(
1− M

ρ+ 2M
+ 2L

)
+ 2∂ρ∂vφ+

2

ρ+ 2M
∂vφ−

l(l + 1)

(ρ+ 2M)2
φ = 0. (6.16)

Since we are interested only in the contribution coming from the vicinity of the horizon

in the case of small luminosity assuming ρ/M0 � 1, L � 1 and using the quasi-static

approximation Lv
2M0
� 113, we can write

2

ρ+ 2M
≈ 1

M0

(
1− ρ

2M0
+
Lv

M0

)
(6.17)

2

ρ+ 2M

(
1− M

ρ+ 2M
+ 2L

)
≈ 1

2M0

(
1 + 4L+

Lv

M0

)
(6.18)

and equation (6.16) becomes(
4L+

ρ

2M0

)
∂2
ρφ+

1

2M0

(
1 + 4L+

Lv

M0

)
∂ρφ+ 2∂ρ∂vφ

+
1

M0

(
1− ρ

2M0
+
Lv

M0

)
∂vφ−

l(l + 1)

(2M0)2
φ = 0. (6.19)

We now make use of the standard WKB ansatz

φ(ρ, v) = U(ρ)e−iωvei
∫ ρ k(ρ′)dρ′ . (6.20)

and find that the real part of (6.19) takes the form(
4L+

ρ

2M0

)
(U ′′ − k2U) +

U ′

2M0
+ 2ωkU − l(l + 1)

(2M0)2
U = 0, (6.21)

which, as a consequence of our approximation scheme, is v-independent. This part is

sufficient for obtaining the wavenumber k. The imaginary part could be used to compute

the amplitude but since we are only interested in counting the modes of the field with the

help of the wavenumber we can ignore it. Moreover the v-independence of (6.21) shows

that for the purpose of the entropy computation, to be presented below, the geometry is

static. In the WKB approximation one assumes that the amplitude U(ρ) varies slowly

13This approximation means that we only consider v which are small compared to the expected lifetime
of the black hole M0L

−1.
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compared to the wave number

U ′

U
� k,

U ′′

U
� k2, (6.22)

and therefore (6.21) becomes

−
(

4L+
ρ

2M0

)
k2 + 2ωk − l(l + 1)

(2M0)2
= 0, (6.23)

which can be solved for k giving

k± ≈
ω ±

√
ω2 −

(
4L+ ρ

2M0

)
l(l+1)
(2M0)2

4L+ ρ
2M0

, (6.24)

where again we neglected the terms which are of higher order in our approximation scheme.

These two solutions correspond to incoming and outgoing modes, respectively and can be

used to calculate the thermodynamic entropy associated to the field via a count of its

number of modes and the derivation of the statistical partition function.

By approximating the sum over l with an integral the number of modes with frequency

up to ω is given by, see also [69]

g(ω) =

∫ lmax

0
ν(l, ω)(2l + 1)dl, (6.25)

where ν(l, ω) is the number of nodes in the mode with (l, ω) and lmax is the maximal

value for l such that the square root in (6.24) is real. The quantity ν can be explicitly

calculated by considering the modes (6.24) in the box of the radial length Λ, which acts

as an infrared regulator

Λ = ν
λ

2
= ν

π

k
→ πν = Λk, k =

2π

λ
, (6.26)

where λ is the wavelength of the mode.

In the original brick wall calculation [12] it is assumed that the scalar field, whose

entropy we are going to compute, vanishes beyond the brick wall, situated at a small

distance h from the Schwarzschild black hole horizon at rSch, so that all the relevant

integrals have the lower limit at rSch + h. In the case of the Schwarzschild black hole

considered in [12] the apparent and event horizon coincide, rSch = rEH = rAH , however

in our case they are different and we must decide at which of the two we impose the

scalar field boundary conditions. Our argument relies on the observation that in the brick

wall picture the scalar field is to be in thermal equilibrium at temperature T which is

identified with the temperature of Hawking radiation. However, by invoking the so-called

tunneling picture, it can be argued that the Hawking radiation originates at the vicinity of

the apparent, not the event horizon (see [70] and references therein). Thus, remembering
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that the apparent horizon corresponds to ρ = 0, we choose the integration range in the

formula above to go from 0 to Λ, where Λ is the infra-red cutoff introduced before, whose

explicit value will not interest us here, since the expression for the area contribution to

the entropy does not depend on it. The number of nodes is thus given by the integral

2πν(l, ω) =

∫ Λ

0
k+dρ =

∫ Λ

0

ω +

√
ω2 −

(
4L+ ρ

2M0

)
l(l+1)
(2M0)2

4L+ ρ
2M0

dρ, (6.27)

where we used eq. (6.24) and only considered the contribution from the outgoing modes.

We notice that the ingoing solutions close to the apparent horizon are moving towards the

singularity and one can argue that they can not contribute to the entropy since they do

not appear outside of the apparent horizon where we are counting the modes. As we will

find below, this choice is also justified a posteriori, by the remarkable agreement of our

final result with the Bekenstein-Hawking entropy relation.

Let us notice that the equation for the number of nodes above differs from the one ob-

tained previously in the literature in [69] in two aspects. First, due to the approximations

we made there is no dependence on the advanced time v and second, we do not have to

introduce a cut-off close to the horizon, since the finite luminosity prevents the integrand

from diverging at ρ = 0. The integration with respect to l in eq. (6.25) is taken over those

values for which the square root is real and yields

g(ω) =

∫ Λ

0

5(2GM0 + ρ)4ω3

6π(8M0L+ ρ(1 + 4L))2
dρ. (6.28)

The leading contributions in the integral in (6.28) are thus given by

g(ω) =
5ω3M3

0

3πL
+

5ω3Λ3

18π(1 + 8L)
, (6.29)

where the second term is the usual volume contribution and has no relevance for our

discussion. The thermodynamic partition function of the field is given by

Z = e−βF , (6.30)

where F is the free energy

πβF =

∫
dg(ω) ln

(
1− e−βω

)
. (6.31)

Using (6.29) and neglecting the volume contribution to g(ω) we have

F =
1

β

∫ ∞
0

ln(1− e−βω)
dg(ω)

dω
dω = −M

3
0π

3

9Lβ4
, (6.32)
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from which we can calculate the entropy of the field associated to the horizon boundary

S = β2 ∂

∂β
F =

4M3
0π

3

9Lβ3
. (6.33)

Comparing our result for the free energy (6.32) with the standard result obtained from

the brick wall calculation (6.15) we see that the brick wall width parameter h introduced

by ’t Hooft can be expressed in terms of the luminosity of the black hole as

h =
32

5
LM0 , (6.34)

and thus the backreaction of the quantum radiance on the horizon structures of the black

hole naturally provides the regulator needed for a finite horizon contribution to the field

entropy.

In order to obtain an expression for the entropy (6.33) to be compared to the Bekenstein-

Hawking relation (6.1) we now have to spell out the explicit form of the luminosity L in

terms of the black hole mass M0. In the first order approximation used in our calculation

the luminosity L is a small quantity so that we can identify it with the luminosity LS of

Hawking radiation in the case of a Schwarzschild black hole. Any correction to LS coming

from backreaction effects would be subleading and can therefore be safely neglected. To

find LS , one considers [71] a flux X of radiation with energy ωk

X(ωk) =
Γ(ωk)

2π(e8πM0ωk − 1)
, (6.35)

where the factor Γ models the backscattering. Integrating the flux times the energy ω we

find the luminosity that escapes to infinity

LS =

∫ ∞
0

dω ωX(ω). (6.36)

The factor Γ can be approximated by [72]

Γ ≈ 27πM2
0ω

2 (6.37)

and integration over ω yields

LS ≈
1.69

7680πM2
0

, (6.38)

Plugging the expression (6.38) in (6.33) we finally obtain

S = 0.987 · 4πM2
0 = 0.987SBH (6.39)

where SBH is the Bekenstein-Hawking entropy. We thus see that our model reproduces the

exact result of Bekenstein-Hawking with an accuracy close to 99%, which is a remarkable
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result given the rather crude approximations that we used.

There is an important comment to be made at this point. In our calculation of the

entropy we assumed that the luminosity of the black hole results from a single massless

scalar mode, the same that we used to compute the entropy. Since in nature we do not

know any massless scalar field to exist it might be argued that one should use instead

in our computations the massless fields that we know about, namely photons and gravi-

tons, i.e., four massless degrees of freedom. Each degree of freedom will contribute the

amount (6.33) to the entropy. As for the luminosity one can use the numerical results of

Page [73], to see that the contribution to luminosity of photons and gravitons is of order

3×10−5 1/M2
0 as compared to 7×10−5 1/M2

0 given by (6.38). This means that the final en-

tropy will be by a factor 8 larger in the case of photons and gravitons than it is in the case

of a single scalar. On the other hand it is believed that the Bekenstein–Hawking entropy

is fundamental, capturing some essential features of space-time and from that perspective

it is hard to imagine that it could depend on the number of massless degrees of freedom

in nature, which seems to be rather contingent. The fact that employing a single massless

degree of freedom reproduces the correct value, with a small error, indicates that there

might be something special about the single massless scalar field model.

To summarize, in this section we showed how small backreaction effects can be intro-

duced in the derivation of the thermodynamic entropy of a field in thermal equilibrium

in the proximity of a black hole horizon. The resulting changes due to a small but non-

vanishing luminosity on the horizon structure of the black hole provide a natural brick

wall regulator for the near-horizon modes of the field. Using the small luminosity and

quasi-static approximations we were able to solve the equations of motion for a scalar

field in the evaporating metric to find an explicit expression for the field modes, the de-

grees of freedom contributing to the thermodynamic partition function of the field. We

showed that once the width of the quantum ergosphere is set by the Hawking luminosity

the horizon contribution to the entropy of the field is in very good agreement with the

Bekenstein-Hawking relation for the black hole entropy. In the original brick wall calcula-

tion the width of the brick wall had to be adjusted by hand in order to have the correct

proportionality factor between entropy and the black hole area. From this point of view

we find our result particularly suggestive: the non-trivial horizon geometry determined by

the backreaction of the Hawking flux leaves no arbitrary parameter to be tuned to obtain

the desired result.

6.3 Information loss paradox and BMS

At the end of Section 5.5 we have mentioned that the κ-deformation of BMS can be argued

to affect a discussion concerning the information loss paradox. To properly explain our

argument we first take a moment to review the main points of this paradox, a loophole

which potentially leads to a way out of the paradox [13] involving the BMS symmetry and
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a counter argument aiming to invalidate this loophole [63, 64].

By means of a semi-classical derivation Hawking [21] demonstrated that black holes

radiate particles and found that the emission is described by an exact blackbody spectrum.

It has furthermore been argued by Hawking [22] that this radiation does not carry any

information about the matter fields that have formed the black hole. The microscopic

origin of the radiation are particle-antiparticle pairs which form in the vicinity of the black

hole horizon with particles of negative energy falling into the black hole and particles

with positive energy escaping to infinity. The important point is that this process is

completely independent of the interior of the black hole and the radiation therefore carries

no information about the infalling matter whatsoever. This point is particularly stressed

in [74], where spacelike slices of the black hole spacetime are considered and it is shown

that on such a slice any infalling matter is extremely far away from the place where

the particle pairs are created. Due to the no-hair theorem [75] it is furthermore usually

assumed that the exterior of the black hole carries very little information, namely only

the total mass, angular momentum and electric charge. One can therefore argue that the

Hawking radiation can at most carry information about these three quantities.

Eventually the black hole will decay to the vacuum,14 which is usually considered to

be unique. It would therefore appear that all information falling into the black hole, for

instance arbitrary multipole momenta the infalling matter carries, is lost because it can

neither be stored in the geometry of spacetime nor in the Hawking radiation. On the other

hand, quantum mechanics, which has been used to derive this result, demands that the

evolution of all matter has to be unitary, i.e. information preserving. This contradiction

is, in essence, what is referred to as the information loss paradox.

In [13] Hawking, Perry and Strominger argue that at least one of the assumptions

underlying the argument of [22] is in fact flawed as a consequence of the presence of the

BMS symmetry. This assumption is that black holes have “no hair” in the sense that

externally they can be described using just three numbers, namely the total mass, angular

momentum and electric charge. It is pointed out that this statement is true only up

to diffeomorphisms, for instance a boosted black hole will additionally carry momentum

charge. Since the boosted black hole has a different charge it should be considered as a

physically inequivalent state. Previously it has been assumed that the maximum number

of such “diffeomorphism hair” is eleven, ten Poincaré charges and electric charge, and

that this number is far too low to carry the lost information and can have no bearing on

the paradox. When a black hole is supertranslated, however, it will potentially carry an

infinite number of superrotation charges [77] which are referred to as “soft hair”15. Just

as boosting a black hole creates a distinguishable solution so does supertranslating one.

This can be seen from the action of the Lie derivative δfg = Lfg on NA (as defined in

14Occasionally the formation of a remnant is discussed in the literature, see [76] for an overview.
15This name is derived from a close relation between the BMS symmetry and soft photon theorems [78].

Soft photons are photons with zero energy and hard ones have finite energy.
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(2.9) and with ξf = ξ(f, 0) from (2.12))

δfNA = −3mB∂Af (6.40)

and from (2.29) it follows that the supertranslated black hole indeed carries non-vanishing

superrotation charge. Since f(xA) is a general function on the sphere there can be an

infinite amount of such charges. Notice that the supertranslated black hole does not carry

any supertranslation charge, i.e. “supermomentum”, which is analogous to the fact that

translating a black hole does not create any momentum and follows from

δf mB = 0. (6.41)

Now, if the black hole evaporates superrotation charge will be carried away from it by

the quanta composing the Hawking radiation but the total amount of charge has to be

conserved. This charge conservation enforces an exact correlation between the Hawking

quanta of early and late radiation. Consider, for instance16, an initially stationary black

hole and early quanta that carry away total momentum P. Momentum conservation

dictates that the remaining black hole has momentum −P and late quanta will carry the

same total momentum. The same argument can be made for the conservation of soft hair.

This introduces correlations between early and late quanta which would lead to a deviation

from the thermal spectrum and potentially renders the evaporation process unitary.

This argument was refuted by Bousso, Mirbabayi and Porrati [63, 64] who argue that

soft hair could not resolve the black hole unitarity problem, because their conservation

laws are automatically satisfied. This is shown using a canonical transformation which

makes it apparent that the soft modes carrying the superrotation charges decouple from

the hard ones, which carry the Poincaré charges, and evolve trivially. As a result only

the Poincaré charges evolve non-trivially and each soft charge stays the same all the way

through from I− to I+, such that only the conservation of Poincaré charges introduces

correlation between early and late quanta in the Hawking radiation. Staying within the

metaphor one can say that although a black hole has infinitely many soft hair, they are

perfectly combed, so that they do not tangle with the hard ones.

The presence of deformation changes this qualitative picture considerably, as we have

suggested in [58], the reason being the co-product structure and the associated modification

of the composition laws. Indeed it follows from the discussion in section 5.5 that the

addition of two superrotation charges generically depends on the Poincaré charges. Thus,

in the above discussed conservation laws the total superrotation charge of the soft modes

will generically depend on the Poincaré charge carried by the hard modes. This makes the

clear separation of hard and soft part impossible, which is crucial for the argument put

forward by [63, 64]. Notice that this effect is negligible at the LHC energy scale, since it

is suppressed by 1/κ, which is expected to correspond to the Planck scale.

16This example is taken from [63]
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We therefore find that the fundamental property of Hopf algebras, the presence of a

non-trivial coproduct structure, opens the possibility that early and late Hawking radiation

quanta are correlated after all. In respect to the information loss paradox this is only a

tentative argument at this state, since it is not clear whether the magnitude of this effect

is sufficient to introduce correlations which render the evaporation process unitary.
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7 Conclusions

In this thesis we have investigated the consequences of the generalization of the Poincaré

to the BMS symmetry in a number of different contexts. We first explained how this

generalization arises from the analysis of asymptotic symmetries of spacetime. The key

point was that demanding only the asymptotic form of spacetime to be invariant under

symmetry transformations, instead of the spacetime as a whole, leads to a much larger,

in fact infinite-dimensional, symmetry group. We have also shown that the corresponding

symmetry algebra contains infinitely many Poincaré subalgebras, in three and in four

dimensions.

In section 3 we have analyzed the asymptotic symmetries of asymptotically flat space-

times in the Hamiltonian formulation of GR. In contrast to previous treatments we have

expressed the asymptotic expansion of the spatial metric and conjugate momenta in terms

of a Bondi-type spacetime metric using a 3+1 decomposition. An important insight of

this procedure was that the falloff conditions on the momenta translate to the requirement

that only such spacetimes are admissible that radiate a finite amount of energy. We then

found that for the class of spacetimes we consider the falloff conditions are sufficient to

remove all divergences in the theory and there is no need to introduce parity conditions.

The charges which are generating supertranslations are parametrized by two arbitrary

functions on the sphere and are finite for every mode of the two functions. The supertrans-

lation sector is therefore larger than the one of the BMS algebra, which is parametrized

by a single arbitrary function on the sphere.

A result that remains to be understood better is that spatial translations do not pre-

serve the Bondi determinant condition in our treatment. Why is it that at null infinity this

condition is fulfilled automatically whereas at spatial infinity it turns out to be too rigid?

Another intriguing question in this context is whether the supertranslation sector at null

infinity can be enlarged by dropping the determinant condition. Possibly this enlarged

algebra at null infinity is isomorphic to the one we found at spatial infinity? We hope to

address these questions in future work.

The topic of section 4 was the construction of a gauge theory in three dimensions with

BMS instead of Poincaré as gauge group. In a strict sense this can not be done because

the BMS group does not contain a central element, which is needed for the construction of

a gauge invariant action. Instead we have used the central element of the Poincaré group,

which was motivated by the observation that the resulting action generically contains

gauge fields from outside the Poincaré sector. This could potentially result in an interesting

extension of the field equations. But it turned out that in order for this action to be gauge

invariant these extra gauge fields have to be assumed to vanish, so that one is left with

just the standard Poincaré action. Furthermore, we found that this action is invariant

under supertranslations, but this invariance is trivial in the sense that the gauge fields

themselves are invariant, with the exception of two modes of supertranslations.

We have also considered the case of a finite cosmological constant, so that the gauge
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group describes the asymptotic symmetry of spacetimes which asymptotically approach

Anti-de Sitter spacetime. The main difference to the asymptotically flat case is that

supertranslations do not commute anymore. Again, the considered algebra has no central

element and we construct the action using the one from the isometry group of Anti-de

Sitter spacetime. To be gauge invariant the resulting action can only contain gauge fields

which correspond to these isometries and they are also the only transformations the action

is non-trivially invariant under. The result is therefore largely a negative one: the action

is only gauge invariant if it is constructed from the standard Poincaré gauge fields and

this invariance is lost when one tries to include BMS fields.

In the following section 5 we performed a κ-deformation of the BMS symmetry. Such

deformed symmetries are expected to describe the structure of spacetimes at the Planck

scale, where quantum gravity effects become important. After reviewing some necessary

mathematical notions we showed how this deformation can be done in a constructive way

using a twist deformation. Such a deformation leaves the algebra sector unchanged but

leads to a deformed coproduct, which in turn implies a modified composition rule for

Eigenvalues of many-particle states. We found that according to this modified rule the

sum of two supertranslation or superrotation charges generically depends on charges from

the Poincaré sector.

Finally, in section 6 we discussed black hole entropy, the information loss paradox and

its relation to the BMS symmetry. In an attempt to better understand the microscopic

origin of black hole entropy we first revisited the brick wall model by ’t Hooft. By in-

corporating backreaction effects of Hawking radiation on the spacetime we were able to

give a natural explanation for the appearance of the brick wall, which is a regulator that

was introduced to obtain a finite result for the black hole entropy equal to the standard

Bekenstein-Hawking expression. In our derivation the brick wall is identified with the

quantum ergosphere, the region between the event and apparent horizon. In contrast to

’t Hooft’s original argument we obtain the standard expression for the black hole entropy

with high accuracy without introducing an external parameter.

In the second part of this section we explained an argument recently proposed by

Hawking et al. that is related to the BMS symmetry and potentially resolves the infor-

mation loss paradox semi-classically. They argue that since there is an infinite number of

conserved BMS charges, correlations are introduced during the black hole evaporation pro-

cess between quanta of early and late radiation. These correlations could conceivably lead

to a deviation from the thermal spectrum of the Hawking radiation and render the evap-

oration process unitary. Bousso et al. refute this argument by claiming that the modes

which carry the BMS charges evolve trivially and that they completely decouple from

modes carrying the Poincaré charges. Our results from the κ-deformation of the BMS

symmetry showed that due to the deformed coproducts such a decoupling of Poincaré

and BMS modes is not possible. Such effects become large only at the Planck scale and

therefore go beyond the semi-classical treatment.
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8 Appendix

8.1 Four-dimensional deformed antipode

The deformed antipode can be obtained from its defining property (5.6) and using the

expressions for the coproduct (5.54)-(5.57) one obtains

Sn,ε(km) = −km −
i

(1− 2n)
√

2κ

(
(m+ 2n− 1)k0S1−n+m,1−n +mkmS1−n,1−n

)
+

iε

2(1− 2n)
√

2κ

(
k1−2n[(m− 2n+ 1)Sn+m,1−n + (m+ 2n− 1)S1−n+m,n]

+ k̄1−2n[(m− 2n+ 1)An+m,1−n + (m+ 2n− 1)An,1−n+m]

− 2(1− 2n−m)[k1−2n+mSn,1−n + k̄1−2n+mAn,1−n]
)

+O(κ−2) (8.1)

Sn,ε(k̄m) = −k̄m −
i

(1− 2n)
√

2κ

(
(m+ 2n− 1)k0A1−n+m,1−n +mkmA1−n,1−n

)
+

iε

2(1− 2n)
√

2κ

(
k1−2n[(m− 2n+ 1)An+m,1−n + (m+ 2n− 1)A1−n+m,n]

+ k̄1−2n[(m− 2n+ 1)Sn+m,1−n + (m+ 2n− 1)Sn,1−n+m]

− 2(1− 2n−m)[k̄1−2n+mSn,1−n − k1−2n+mAn,1−n]
)

+O(κ−2) (8.2)

Sn,ε(Spq) = −Spq −
i

(1− 2n)
√

2κ
(p+ q)SpqS1−n,1−n

+
iε

(1− 2n)
√

2κ

(
[(1− n− p)Sp+1−2n,q + (1− n− q)Sq+1−2n,p]Sn,1−n

+ [(1− n− p)Ap+1−2n,q + (1− n− q)Aq+1−2n,p]An,1−n

)
+O(κ−2) (8.3)

Sn,ε(Apq) = −Apq −
i

(1− 2n)
√

2κ
(p+ q)ApqS1−n,1−n

+
iε

(1− 2n)
√

2κ

(
[(1− n− p)Ap+1−2n,q + (1− n− q)Ap,q+1−2n]Sn,1−n

+ [(1− n− p)Sp+1−2n,q + (1− n− q)Sq+1−2n,p]An,1−n

)
+O(κ−2). (8.4)
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